17.設(shè)數(shù)列{an}、{bn}滿足a0=1,b0=0,且$\left\{\begin{array}{l}{{a}_{n+1}=7{a}_{n}+6_{n}-3}\\{_{n+1}=8{a}_{n}+7_{n}-4}\end{array}\right.$(n∈N),求證:an是完全平方數(shù).

分析 a0=1,b0=0,且$\left\{\begin{array}{l}{{a}_{n+1}=7{a}_{n}+6_{n}-3}\\{_{n+1}=8{a}_{n}+7_{n}-4}\end{array}\right.$(n∈N),可得a1=4,b1=4,由7an+1=49an+42bn-21,6bn+1=48an+42bn-24,相減可得:6bn+1-7an+1=-an-3,當(dāng)n≥2時(shí),bn=$\frac{1}{6}(7{a}_{n}-{a}_{n-1}-3)$.代入可得:an+1=7an+7an-an-1-6,化為${a}_{n+1}-\frac{1}{2}$=$14({a}_{n}-\frac{1}{2})$-$({a}_{n-1}-\frac{1}{2})$,令${a}_{n}-\frac{1}{2}$=cn,則cn+1=14cn-cn-1,c1=$\frac{1}{2}$,c2=$\frac{97}{2}$.其特征方程為:x2-14x+1=0.解得x=7$±4\sqrt{3}$.令cn=r1$(7+4\sqrt{3})^{n}$+${r}_{2}(7-4\sqrt{3})^{n}$,分別令n=1,2,可得r1=r2=$\frac{1}{4}$.可得an.再利用二項(xiàng)式定理展開即可證明.

解答 解:∵a0=1,b0=0,且$\left\{\begin{array}{l}{{a}_{n+1}=7{a}_{n}+6_{n}-3}\\{_{n+1}=8{a}_{n}+7_{n}-4}\end{array}\right.$(n∈N),
∴a1=7a0+6b0-3=4,b1=8a0+7b0-4=4,
a2=7a1+6b1-3=49,b2=8a1+7b1-4=56.
a3=7a2+6b2-3=676.
由7an+1=49an+42bn-21,6bn+1=48an+42bn-24,
相減可得:6bn+1-7an+1=-an-3,
可得bn+1=$\frac{1}{6}$(7an+1-an-3),
當(dāng)n≥2時(shí),bn=$\frac{1}{6}(7{a}_{n}-{a}_{n-1}-3)$,
代入可得:an+1=7an+7an-an-1-6,
化為${a}_{n+1}-\frac{1}{2}$=$14({a}_{n}-\frac{1}{2})$-$({a}_{n-1}-\frac{1}{2})$,
令${a}_{n}-\frac{1}{2}$=cn
則cn+1=14cn-cn-1,c1=$\frac{1}{2}$,c2=$\frac{97}{2}$.
其特征方程為:x2-14x+1=0.解得x=7$±4\sqrt{3}$.
令cn=r1$(7+4\sqrt{3})^{n}$+${r}_{2}(7-4\sqrt{3})^{n}$,
分別令n=1,2,
∴$\frac{7}{2}$=${r}_{1}(7+4\sqrt{3})+{r}_{2}(7-4\sqrt{3})$,
$\frac{97}{2}$=${r}_{1}(7+4\sqrt{3})^{2}$+${r}_{2}(7-4\sqrt{3})^{2}$,
解得r1=r2=$\frac{1}{4}$.
∴${a}_{n}={c}_{n}+\frac{1}{2}$=$\frac{(7+4\sqrt{3})^{n}}{4}$+$\frac{(7-4\sqrt{3})^{n}}{4}$+$\frac{1}{2}$=$\frac{1}{4}[(2+\sqrt{3})^{2n}+(2-\sqrt{3})^{2n}]$+$\frac{1}{2}$=$[\frac{(2+\sqrt{3})^{n}}{2}+\frac{(2-\sqrt{3})^{n}}{2}]^{2}$.
而$\frac{(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}}{2}$為整數(shù),
∴an是完全平方數(shù).

點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、數(shù)列的特征方程、二項(xiàng)式定理的應(yīng)用、完全平方數(shù),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,x≥0}\\{x+2,x<0}\end{array}\right.$則不等式f(x)$>\frac{1}{2}$的解集是{x|-$\frac{3}{2}$<x<0或2kπ+$\frac{π}{6}$<x<2kπ+$\frac{5π}{6}$,k∈N}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若f(x)=ln(e3x+1)+$\frac{3}{2}$ax是偶函數(shù),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=x2-3在區(qū)間(1,2)內(nèi)的零點(diǎn)的近似值(精確度0.1)是.
A.1.55B.1.65C.1.75D.1.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系XOY中,圓C:(x-a)2+y2=a2,圓心為C,圓C與直線l1:y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)直線l2與l1垂直,且與圓C交于不同兩點(diǎn)A、B,若S△ABC=2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=log3(x+1)+$\sqrt{4-{2}^{x}}$的定義域是(-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)四邊形ABCD為平行四邊形,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AD}$|=4,若點(diǎn)M、N滿足$\overrightarrow{BM}$=3$\overrightarrow{MC}$,$\overrightarrow{DN}$=2$\overrightarrow{NC}$,則$\overrightarrow{AM}$•$\overrightarrow{NM}$=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知對(duì)任意的實(shí)數(shù)x都有f(x)=f(-x),且f(x)在區(qū)間(0,+∞)上是增函數(shù),若x1>0,x1+x2<0,則(  )
A.f(x1)>f(x2B.f(x1)=f(x2
C.f(x1)<f(x2D.無(wú)法比較f(x1)與f(x2)的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=$\frac{|1-x^2|}{1-|x|}$的圖象是( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案