18.△ABC是邊長(zhǎng)為2的等邊三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+2$\overrightarrow$,則下列結(jié)論錯(cuò)誤的是( 。
A.|$\overrightarrow$|=1B.($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$C.$\overrightarrow{a}$•$\overrightarrow$=1D.|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$

分析 由已知可得$\overrightarrow=\frac{1}{2}\overrightarrow{BC}$,然后逐一驗(yàn)證四個(gè)選項(xiàng)得答案.

解答 解:∵△ABC是邊長(zhǎng)為2的等邊三角形,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+2$\overrightarrow$,
∴$2\overrightarrow=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}$,則$|\overrightarrow|=\frac{1}{2}|\overrightarrow{BC}|=1$,A正確;
∵($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=$\overrightarrow{a}•\overrightarrow+|\overrightarrow{|}^{2}=\overrightarrow{AB}•\frac{1}{2}\overrightarrow{BC}+1$=$\frac{1}{2}×2×2×cos120°+1=0$,
∴($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,故B正確;
$\overrightarrow{a}•\overrightarrow=0-|\overrightarrow{|}^{2}=-1$,故C錯(cuò)誤;
$|\overrightarrow{a}+\overrightarrow|=\sqrt{(\overrightarrow{a}+\overrightarrow)^{2}}=\sqrt{|\overrightarrow{a}{|}^{2}+2\overrightarrow{a}•\overrightarrow+|\overrightarrow{|}^{2}}$
=$\sqrt{4+2×2×1×cos120°+1}$=$\sqrt{3}$,故D正確.
故選:C.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=ax+3(a>0且a≠1)圖象一定過定點(diǎn)( 。
A.(0,2)B.(0,4)C.(2,0)D.(4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)$a=ln3,b={log_2}\sqrt{3},c={log_3}\sqrt{2}$,則( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若m、n為兩條不重合的直線,α、β為兩個(gè)不重合的平面,則下列命題中正確的是( 。
A.若m、n都平行于平面α,則m、n一定不是相交直線
B.若m、n都垂直于平面α,則m、n一定是平行直線
C.已知α、β互相平行,m、n互相平行,若m∥α,則n∥β
D.若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是( 。
A.$y={({\frac{1}{2}})^x}$B.$y=\frac{2}{x}$C.y=-2x3D.$y={log_2}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個(gè)零點(diǎn),則所有零點(diǎn)之和為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=lg(1-x2),集合A為函數(shù)f(x)的定義域,集合B=(-∞,0]則圖中陰影部分表示的集合為( 。
A.[-1,0]B.(-1,0)C.(-∞,-1)∪[0,1)D.(-∞,-1]∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列圖形中,表示函數(shù)圖象的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sm=9,則m=( 。
A.11B.99C.120D.121

查看答案和解析>>

同步練習(xí)冊(cè)答案