16、如圖,四棱錐A-BCD被一平面所截,截面為平行四邊形EFGH,求證:CD∥平面EFGH.
分析:先根據(jù)四邊形EFGH為平行四邊形得到EF∥GH,進(jìn)而可根據(jù)線面平行的判定定理可證明EF∥平面BCD,再由線面平行的性質(zhì)定理可得到EF∥CD,最后根據(jù)線面平行的判定定理可證明CD∥平面EFGH,從而得證.
解答:證明:∵四邊形EFGH為平行四邊形,
∴EF∥GH.又GH?平面BCD,
∴EF∥平面BCD.
而平面ACD∩平面BCD=CD,EF?平面ACD,
∴EF∥CD.
而EF?平面EFGH,CD?平面EFGH,
∴CD∥平面EFGH.
點(diǎn)評(píng):本題主要考查線面平行的判定定理和性質(zhì)定理.考查對(duì)基礎(chǔ)知識(shí)的綜合應(yīng)用能力和基本定理的掌握能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•南寧模擬)如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=
2
BC,AB=AC=
2
B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(14分)如圖,在四棱錐中,,

,BC⊥AB,CD⊥AD,BC=CD=PA=a,

              (Ⅰ)求證:平面PBD⊥平面PAC.

(Ⅱ)求四棱錐P-ABCD的體積V;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(14分)如圖,在四棱錐中,,

,BC⊥AB,CD⊥AD,BC=CD=PA=a,

              (Ⅰ)求證:平面PBD⊥平面PAC.

(Ⅱ)求四棱錐P-ABCD的體積V;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣西南寧市高三第三次適應(yīng)性測(cè)試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣西南寧市高三第三次適應(yīng)性測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案