(本題滿分12分)

某風景區(qū)有40輛自行車供游客租賃使用,管理這些自行車的費用是每日72元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。

(1)求函數(shù)的解析式及其定義域;

(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

 

【答案】

(1);

(2)當每輛自行車的日租金定在10元時,才能使一日的凈收入最多。

【解析】本題考查學(xué)生的函數(shù)模型意識,注意分段函數(shù)模型的應(yīng)用.將每一段的函數(shù)解析式找準相應(yīng)的函數(shù)類型,利用相關(guān)的知識進行解決.

(1)利用函數(shù)關(guān)系建立各個取值范圍內(nèi)的凈收入與日租金的關(guān)系式,寫出該分段函數(shù),是解決該題的關(guān)鍵,注意實際問題中的自變量取值范圍;

(2)利用一次函數(shù),二次函數(shù)的單調(diào)性解決該最值問題是解決本題的關(guān)鍵.注意自變量取值區(qū)間上的函數(shù)類型.應(yīng)取每段上最大值的較大的即為該函數(shù)的最大值.

解:(1)當

    ……………………………………………………2分

 ………………………………………4分

,   …………………………………………………………………………6分

 ……………………………………………………7分

   (2)對于,             

顯然當(元),  ………………………………………………………………9分

   ………………………………………………11分

∴當每輛自行車的日租金定在10元時,才能使一日的凈收入最多。 …………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案