16.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

分析 求出橢圓的a,b,c,可得雙曲線的焦點(diǎn)和頂點(diǎn),可得雙曲線的標(biāo)準(zhǔn)方程.

解答 解:橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的a=5,b=4,c=3,
即有雙曲線的頂點(diǎn)為(0,3),(0,-3),
雙曲線的焦點(diǎn)為(0,5),(0,-5),
即有雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.
故答案為:$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

點(diǎn)評(píng) 本題考查橢圓和雙曲線的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)中心對(duì)稱(chēng),則|φ|的最小值為(  )
A.-$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求值:
(1)2log510+log50.25          
(2)(5$\frac{1}{16}$)0.5+(-1)-1÷0.75-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.將二進(jìn)制數(shù)110101(2)化成十進(jìn)制數(shù),結(jié)果為53,再將該結(jié)果化成七進(jìn)制數(shù),結(jié)果為104(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列指數(shù)式與對(duì)數(shù)式互化不正確的一組是(  )
A.e0=1與ln1=0;B.8${\;}^{\frac{1}{3}}$=2與log82=$\frac{1}{3}$
C.log39=2與9${\;}^{\frac{1}{2}}$=3D.log33=1與31=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,1),且離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓E的方程;
(2)若M點(diǎn)為右準(zhǔn)線上一點(diǎn),B為左頂點(diǎn),連接BM交橢圓于N,求$\frac{MN}{NB}$的取值范圍;
(3)經(jīng)過(guò)點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同兩點(diǎn)P,Q(均異于點(diǎn)A)證明:直線AP與AQ的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$f(x)=\frac{ax+b}{{{x^2}+1}}$,且$f(0)=0,f(-1)=-\frac{1}{2}$
(1)求f(x)的解析式
(2)證明:f(x)在(0,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定義在R上的奇函數(shù)f(x)=$\frac{{-{2^x}+n}}{{{2^{x+1}}+m}}$.
(1)求實(shí)數(shù)m、n的值;
(2)判斷f(x)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知△ABC的三個(gè)頂點(diǎn)分別為A(1,2)、B(3,4)、C(2,5),作平行于AB的直線1分別交AC、BC于D、E,且△CDE的面積等于△ABC的面積的一半,則直線1的方程是x-y+3-$\sqrt{2}$=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案