已知向量
a
=(1,-1),
b
=(2,1),
c
=(-2,1),若
c
=x
a
+y
b
(x,y∈R),則x-y=
 
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:根據(jù)
a
,
b
c
的坐標,再根據(jù)
c
=x
a
+y
b
構(gòu)建關(guān)于x,y的方程組,解得即可.
解答: 解:∵
a
=(1,-1),
b
=(2,1),
c
=(-2,1),
c
=x
a
+y
b
(x,y∈R),
∴(-2,1)=x(1,-1)+y(2,1),
x+2y=-2
-x+y=1
,
解得,x-y=-1,
故答案為:-1
點評:本題主要考查平面向量基本定理、兩個向量坐標形式的運算,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

向量
a
,
b
c
在正方形網(wǎng)格中的位置如圖所示,若
c
=x
a
+y
b
(x,y∈R),則x-y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln
x-1
2-x
,則f(
7
5
)+f(
8
5
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為整數(shù)且滿足以下條件:(1)a1+a5+a9=93;(2)滿足an>100的n的最小值是15,則通項an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為棱DD1和AB上的點,則下列說法正確的是
 
.(填上所有正確命題的序號)
①A1C⊥平面B1CF;
②在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
③△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
④當E,F(xiàn)為中點時,平面B1EF截該正方體所得的截面圖形是五邊形;
⑤當E,F(xiàn)為中點時,平面B1EF與棱AD交于點P,則AP=
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:tan300°+sin420°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請用“<”號將以下三個數(shù)cos12°,tan48°,sin116°按從小到大的順序連接起來:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正六邊形ABCDEF,且
AC
=
a
,
BD
=
b
,下列向量可表示為-
2
3
a
+
1
3
b
的是( 。
A、
DE
B、
AD
C、
EF
D、
CD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos37.5°sin97.5°-cos52.5°sin187.5°的值為( 。
A、
2
2
B、-
2
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步練習冊答案