8.(Ⅰ)計(jì)算:$\frac{{8}^{\frac{2}{3}}×{3}^{lo{g}_{3}2}}{lne-lo{g}_{\frac{1}{64}}4}$;
(Ⅱ)化簡(jiǎn):$\frac{sin(θ-π)•cos(\frac{π}{2}+θ)•cos(2017π-θ)}{sin(θ-\frac{π}{2})•sin(θ+2016π)}$.

分析 (Ⅰ)利用指數(shù),對(duì)數(shù)的運(yùn)算性質(zhì)即可求值得解;
(Ⅱ)根據(jù)誘導(dǎo)公式即可化簡(jiǎn)求值.

解答 解:(Ⅰ)$\frac{{8}^{\frac{2}{3}}×{3}^{lo{g}_{3}2}}{lne-lo{g}_{\frac{1}{64}}4}$=$\frac{4×2}{1-(-\frac{1}{3})}$=6;
(Ⅱ)$\frac{sin(θ-π)•cos(\frac{π}{2}+θ)•cos(2017π-θ)}{sin(θ-\frac{π}{2})•sin(θ+2016π)}$=$\frac{(-sinθ)(-sinθ)(-cosθ)}{(-cosθ)sinθ}$=1.

點(diǎn)評(píng) 本題主要考查了指數(shù),對(duì)數(shù)的運(yùn)算性質(zhì),利用誘導(dǎo)公式化簡(jiǎn)求值,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在直角坐標(biāo)系平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù),對(duì)于平面上任意一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn),則對(duì)任意偶數(shù)n,用n表示向量$\overrightarrow{{A}_{0}{A}_{n}}$的坐標(biāo)為( 。
A.(n,$\frac{4({2}^{n}-1)}{3}$)B.(n,$\frac{{2}^{n+2}}{3}$)C.($\frac{n}{2}$,$\frac{2({2}^{n}-1)}{3}$)D.($\frac{n}{2}$,$\frac{{2}^{n+1}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.記x=log34•log56•log78,y=log45•log67•log89,則xy=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{xn},{yn}滿足$\underset{lim}{n→∞}$(2xn+yn)=1,$\underset{lim}{n→∞}$(xn-2yn)=1,求$\underset{lim}{n→∞}$(xnyn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)正實(shí)數(shù)x,y滿足xy=$\frac{x-4y}{x+y}$,則y的最大值是$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平面直角坐標(biāo)系中,O為原點(diǎn),A(1,0),B(2,2),若點(diǎn)C滿足$\overrightarrow{OC}$=t($\overrightarrow{OB}$-$\overrightarrow{OA}$),t∈R,則點(diǎn)C的軌跡方程為(  )
A.2x-y=0B.2x-y+2=0C.2x+y-2=0D.2x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求函數(shù)y=$\sqrt{lo{g}_{2}(4x-3)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C:x2+(y-1)2=5,直線1過定點(diǎn)P(1,1).
(1)求圓心C到直線1距離最大時(shí)的直線1的方程;
(2)若1與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.桌面上有大小兩顆球,相互靠在一起.已知大球的半徑為9cm,小球半徑4cm,則這兩顆球分別與桌面相接觸的兩點(diǎn)之間的距離等于12 cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案