分析 (Ⅰ)根據條件建立方程關系即可確定f(x)的解析式;
(Ⅱ)根據函數單調性的定義即可判斷f(x)的單調性并用定義證明;
(Ⅲ)利用函數奇偶性和單調性之間的關系即mx-x>1-x2,即存在$x∈[\frac{1}{2},1]$使mx-x>1-x2成立即-1≤mx-x≤1成立.
解答 解:( I)因為$f(x)=\frac{ax+b}{{{x^2}+c}}(a∈{N^*},b∈R,0<c≤1)$定義在[-1,1]上的奇函數
所以f(0)=0即b=0…(1分)
$f(x)=\frac{ax}{{{x^2}+c}}=\frac{a}{{x+\frac{c}{x}}}$;令$μ=x+\frac{c}{x}$,(0<c≤1)在x∈(0,1]上最小值為${μ_{min}}=μ(\sqrt{c})=2\sqrt{c}$,所以$f{(x)_{max}}=\frac{a}{{2\sqrt{c}}}=\frac{1}{2}$,即$a=\sqrt{c}$…①…(3分)
又$f(1)=\frac{a}{1+c}>\frac{2}{5}$,…②
由①②可得$\frac{1}{2}<a<2$,又因為a∈N*,所以c=a=1
故$f(x)=\frac{x}{{{x^2}+1}}$…(5分)
( II)函數$f(x)=\frac{x}{{{x^2}+1}}$在[-1,1]上為增函數;
下證明:設任意x1,x2∈[-1,1]且x1<x2
則$f({x_1})-f({x_2})=\frac{x_1}{{{x_1}^2+1}}-\frac{x_2}{{{x_2}^2+1}}=\frac{{({x_1}-{x_2})(1-{x_1}{x_2})}}{{({x_1}^2+1)({x_2}^2+1)}}$
因為x1<x2,所以x1-x2<0,又因為x1,x2∈[-1,1],所以1-x1x2>0
即$\frac{{({x_1}-{x_2})(1-{x_1}{x_2})}}{{({x_1}^2+1)({x_2}^2+1)}}<0$,即f(x1)<f(x2)
故函數$f(x)=\frac{x}{{{x^2}+1}}$在[-1,1]上為增函數 …(9分)
( III)因為f(mx-x)+f(x2-1)>0,所以f(mx-x)>-f(x2-1)即f(mx-x)>f(1-x2)
又由( II)函數y=f(x)在[-1,1]上為增函數
所以mx-x>1-x2,即存在$x∈[\frac{1}{2},1]$使mx-x>1-x2成立即-1≤mx-x≤1成立
即存在$x∈[\frac{1}{2},1]$使$m>-x+\frac{1}{x}+1$成立且$1-\frac{1}{x}≤m≤1+\frac{1}{x}$成立
得:m>1且-1≤m≤2
故實數m的所有可能取值{m|1<m≤2}…(12分)
點評 本題主要考查函數奇偶性和單調性的應用,以及函數單調性的證明,綜合考查函數的性質,屬于難題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(-1)>f($\frac{\sqrt{3}}{3}$) | B. | f($\sqrt{2}$)>f(-$\sqrt{2}$) | C. | f(4)>f(3) | D. | f(-$\sqrt{2}$)>f($\sqrt{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | C. | 充分且必要 | D. | 無關 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,$\frac{1}{3}$] | B. | (0,$\frac{1}{3}$] | C. | (0,+∞) | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,2ln2+3) | B. | (-∞,2ln2-3) | C. | (2ln2-3,+∞) | D. | (2ln2+3,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com