【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點(diǎn)集”的序號是(
A.①②
B.②③
C.①④
D.②④

【答案】D
【解析】解:對于①y= 是以x,y軸為漸近線的雙曲線,漸近線的夾角是90°,所以在同一支上,任意(x1 , y1)∈M,不存在(x2 , y2)∈M,滿足好集合的定義;在另一支上對任意(x1 , y1)∈M,不存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,所以不滿足“垂直對點(diǎn)集”的定義,不是“垂直對點(diǎn)集”.
對于②M={(x,y)|y=sinx+1},對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足“垂直對點(diǎn)集”的定義,所以M是“垂直對點(diǎn)集”;正確.
對于③M={(x,y)|y=log2x},取點(diǎn)(1,0),曲線上不存在另外的點(diǎn),使得兩點(diǎn)與原點(diǎn)的連線互相垂直,所以不是“垂直對點(diǎn)集”.
對于④M={(x,y)|y=ex﹣2},如下圖紅線的直角始終存在,對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,﹣1),則N(ln2,0),滿足“垂直對點(diǎn)集”的定義,所以是“垂直對點(diǎn)集”;正確.

所以②④正確.
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設(shè)點(diǎn)a=﹣3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=﹣ 時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù), =2.71828…).

(1)當(dāng)時(shí),過點(diǎn)作曲線的切線,求的方程;

(2)當(dāng)時(shí),求證;

(3)求證:對任意正整數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個(gè)內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,2AE=BD=2.
(Ⅰ)若F是線段CD的中點(diǎn),證明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f′(x)﹣g(x)(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù))在[a,b]上有且只有兩個(gè)不同的零點(diǎn),則稱f(x)是g(x)在[a,b]上的“關(guān)聯(lián)函數(shù)”.若f(x)= +4x是g(x)=2x+m在[0,3]上的“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù)m的取值范圍是(
A.
B.[﹣1,0]
C.(﹣∞,﹣2]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為2。

(1)求函數(shù)上的單調(diào)遞減區(qū)間。

(2)中,若角所對的邊分別是且滿足,及,的面積。

查看答案和解析>>

同步練習(xí)冊答案