已知f(x)=
1
2
(ax+a-x)(a>0且a≠1)的圖象過點(2,
41
9
).判斷f(x)在(0,+∞)上的單調(diào)性.
考點:函數(shù)單調(diào)性的判斷與證明,指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)圖象經(jīng)過的點,求出a,然后判斷函數(shù)的單調(diào)性.
解答: 解:f(x)=
1
2
(ax+a-x)(a>0且a≠1)的圖象過點(2,
41
9
).
41
9
=
1
2
(a2+a-2),
∴a2=9或
1
9

∵a>0且a≠1.
∴a=3或a=
1
3

∴f(x)=
1
2
(3x+(
1
3
-x)=3x
函數(shù)是指數(shù)函數(shù),f(x)在(0,+∞)上是增函數(shù).
點評:本題考查函數(shù)的解析式的求法,指數(shù)函數(shù)單調(diào)性的判斷,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“λ<0”是“數(shù)列an=n2-2λn(n∈N*)為遞增數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對任意n∈N*成立,令bn=an+1-an,且{bn}是等比數(shù)列.
(1)求實數(shù)k的值;
(2)求數(shù)列{an}的通項公式;
(3)求和:Sn=b1+2b2+3b3+…nbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
100
+
y2
25
=1的上頂點為A,直線y=-4交橢圓E于點B,C(點B在點C的左側(cè)),點P在橢圓E上.
(Ⅰ)求以原點O為頂點,橢圓的右焦點為焦點的拋物線的方程;
(Ⅱ)求以原點O為圓心,與直線AB相切的圓的方程;
(Ⅲ)若四邊形ABCP為梯形,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(Ⅰ)若f(x)在x=
1
4
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標(biāo)為x0,證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+4x+5,若二次函數(shù)y=g(x)滿足:①y=f(x)與y=g(x)的圖象在點P(1,10)處有公共切線;②y=f(x)+g(x)是R上的單調(diào)函數(shù).則g(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓x2+y2=1上一點作圓的切線與x軸、y軸的正半軸交于A、B兩點,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于兩條不同的直線l,m兩個不重合的平面α,β的說法,正確的是( 。
A、若l?α且α⊥β,則l⊥β
B、若l⊥β且m⊥β,則l∥m
C、若l⊥β且α⊥β,則l∥α
D、若α∩β=m且l⊥m,則l⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:[40,50),[50,60),[90,100)后得到如圖的頻率分布直方圖.

(Ⅰ)求圖中實數(shù)a的值;
(Ⅱ)若該校高一年級共有學(xué)生500人,試估計該校高一年級在考試中成績不低于60分的人數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,試用列舉法求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案