a,b,c是△ABC的三邊長,關(guān)于x的方程 (a>c>b)的兩根之差的平方等于4,△ABC的面積S=10,c=7.

(1)求角C;

(2)求a、的值.                                                     

 

【答案】

(1) C=60°.(2) =8,=5.

【解析】(1) 設(shè),為方程的兩根,

因?yàn)?)2=()2-4,利用韋達(dá)定理可得,

從而借助,可得,∴C=60°.

(2)由S==10,∴=40,再由,

從而可求a+b,然后再與ab=40解方程組可求出a,b的值.

(1)設(shè),為方程的兩根,

1,·=-,

∴()2=()2-4=4.∴

,∴C=60°.

(2)由S==10,∴=40①

由余弦定理:,即

  ∴②,由①②得:=8,=5.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)角A,B,C是△ABC的三個(gè)內(nèi)角,已知向量
m
=(sinA+sinC,sinB-sinA)
,
n
=(sinA-sinC,sinB)
,且
m
n

(Ⅰ)求角C的大;
(Ⅱ)若向量
s
=(0,-1),
t
=(cosA,2cos2
B
2
)
,試求|
s
+
t
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(a+c,b),
q
=(a-c,b-a)且
p
q
=0,其中角A,B,C是△ABC的內(nèi)角a,b,c分別是角A,B,C的對邊.
(1)求角C的大;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連模擬)已知A、B、C是△ABC的三個(gè)內(nèi)角,且滿足2sinB=sinA+sinC,設(shè)B的最大值為B0
(Ⅰ)求B0的大;
(Ⅱ)當(dāng)B=
3B04
時(shí),求cosA-cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c是△ABC三個(gè)內(nèi)角A,B,C所對邊,且asinAsinB+bcos2A=
3
a.
(1)求
b
a
;   
(2)當(dāng)cosC=
3
3
時(shí),求cos(B-A)的值.

查看答案和解析>>

同步練習(xí)冊答案