已知函數(shù)f(x)=x3-3ax2-9a2x+a3.
(1)設(shè)a=1,求函數(shù)f(x)的極值;
(2)若a>,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,試確定a的取值范圍.
(1)f(x)的極大值是f(-1)=6,極小值是f(3)=-26.;(2)(,].
【解析】(1)利用導(dǎo)數(shù)利用確定極值即可。
(2)解本題的關(guān)鍵是|f′(x)|≤12a轉(zhuǎn)化為恒成立,.然后解不等式組求解即可。
解:(1)當(dāng)a=1時(shí),對函數(shù)f(x)求導(dǎo)數(shù),得f′(x)=3x2-6x-9.令f′(x)=0,解得
x1=-1,x2=3.
列表討論f(x),f′(x)的變化情況:
x |
(-∞,-1) |
-1 |
(-1,3) |
3 |
(3,+∞) |
f′(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
? |
極大 值6 |
? |
極小 值-26 |
? |
所以,f(x)的極大值是f(-1)=6,極小值是f(3)=-26. 5分
(2)f′(x)=3x2-6ax-9a2的圖象是一條開口向上的拋物線,
關(guān)于x=a對稱. 若<a≤1,則f′(x)在[1,4a]上是增函數(shù),從而f′(x)在[1,4a]上的最小值是f′(1)=3-6a-9a2, 最大值是f′(4a)=15a2.
∴必有f′(1)=3-6a-9a2≥-12a,∴只要有f′(4a)=15a2≤12a. 得0≤a≤.
所以a∈(,1]∩[0,], 即a∈(,]. 11分
若a>1,則 ∵|f′(a)|=12a2>12a.
故當(dāng)x∈[1,4a]時(shí)|f′(x)|≤12a不恒成立.
所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范圍是(,]. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求實(shí)數(shù)m的值;
(2)作出函數(shù)f(x)的圖像;
(3)根據(jù)圖像指出f(x)的單調(diào)遞減區(qū)間;
(4)根據(jù)圖像寫出不等式f(x)>0的解集;
(5)求當(dāng)x∈[1,5)時(shí)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)對數(shù)與對數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求t的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新課標(biāo)高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com