若拋物線的焦點與雙曲線的右焦點重合,則的值          
6

試題分析:根據(jù)題意,由于雙曲線右焦點坐標為,因此可知拋物線的焦點,故答案為6
點評:解決該試題的關鍵是利用雙曲線的右焦點坐標得到拋物線的焦點坐標,然后得到參數(shù)p的值,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知三點,曲線上任一點滿足=
(1) 求曲線的方程;
(2) 設是(1)中所求曲線上的動點,定點,線段的垂直平分線與軸交于點,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系中,已知三點,,,曲線C上任意—點滿足:
(l)求曲線C的方程;
(2)設點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點P及直線L有關,并證明你的結(jié)論;
(3)設曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當點P的坐標為(0,2)時,取得最小值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是拋物線的焦點,過且斜率為的直線交兩點.設,則的值等于       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是非零實數(shù),則方程所表示的圖形可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,若,的大小為                      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標a.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的右準線為,右焦點,離心率,求雙曲線方程.

查看答案和解析>>

同步練習冊答案