18.實數(shù)a=0.33,b=log30.3,c=30.3的大小關(guān)系是( 。
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=0.33∈(0,1),b=log30.3<0,c=30.3>1,
∴b<a<c.
故選:C.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=$\sqrt{x-1}+\frac{1}{3-x}$的定義域是{x|x≥1且x≠3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點$A(-\sqrt{3},0)$和$B(\sqrt{3},0)$,動點C引A、B兩點的距離之和為4.
(1)求點C的軌跡方程;
(2)點C的軌跡與直線y=x-2交于D、E兩點,求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=3x-a×3-x是偶函數(shù).則:
(1)a=-1;
(2)$f(x)<\frac{10}{3}$的解集為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)向量$\overrightarrow a=(sinx,\sqrt{3}cosx),\overrightarrow b=(-1,1),\overrightarrow c=(1,1)$.(其中x∈[0,π])
(1)若$(\overrightarrow a+\overrightarrow b)∥\overrightarrow c$,求實數(shù)x的值;
(2)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求函數(shù)$sin(x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a>0,函數(shù)f(x)=x3-ax在[-1,1]上是單調(diào)減函數(shù),則a的最小值是( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|3≤x<7},B={x|4<x<10},則A∪B={x|3≤x<10},(∁RA)∩B={x|7≤x<10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.新定義運算:$|\begin{array}{l}{a}&\\{c}&2gilov7\end{array}|$=ad-bc,則滿足$|\begin{array}{l}{i}&{z}\\{-1}&{z}\end{array}|$=2的復(fù)數(shù)z是1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)將二次函數(shù)h(x)=x2的圖象先向右平移1個單位,再向下平移2個單位得到函數(shù)f(x)的圖象,寫出函數(shù)f(x)的解析式,并求出x∈[0,4]時函數(shù)f(x)的值域.
(2)求f(x)=x2-2ax-1在區(qū)間[0,2]上的最小值.

查看答案和解析>>

同步練習冊答案