A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\sqrt{3}$ |
分析 把x=c代入橢圓方程可得y=$±\frac{^{2}}{a}$,再利用△F1P1P2為正三角形,可得$\sqrt{3}$×$\frac{^{2}}{a}$=2c,化簡(jiǎn)即可得出.
解答 解:把x=c代入橢圓方程可得:$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,解得y=$±\frac{^{2}}{a}$,
∵△F1P1P2為正三角形,∴$\sqrt{3}$×$\frac{^{2}}{a}$=2c,∴$\sqrt{3}({a}^{2}-{c}^{2})$=2ac,即$\sqrt{3}{e}^{2}$+2e-$\sqrt{3}$=0,
解得:e=$\frac{\sqrt{3}}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、等邊三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ①③ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “0≤m≤1”是“函數(shù)f(x)=cosx+m-1有零點(diǎn)”的充分不必要條件 | |
B. | 命題“若am2<bm2,則a<b”的逆命題是真命題 | |
C. | 命題“p∨q”為真命題,則“命題p”和“命題q”均為真命題 | |
D. | 命題“?x∈R,|x|+x2≥0”的否定是“$?{x_0}∈R,|{x_0}|+x_0^2≥0$” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | $4\sqrt{3}-4$ | D. | $4-2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [4,+∞) | C. | (-∞,-1]∪[4,+∞) | D. | (-1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com