【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)設(shè)a,b∈M,證明:|ab|+1>|a|+|b|.

【答案】(Ⅰ)M={x|﹣1<x<1};(Ⅱ)見解析

【解析】

(Ⅰ)分,x去絕對值可得M={x|﹣1<x<1}.(Ⅱ)由(Ⅰ)可得|a|<1,|b|<1,將不等式作差即可得證.

(Ⅰ)當(dāng)時,f(x)=﹣x+2x+1=x+1.

由f(x)<2,得x<1,所以x<1.

當(dāng)x時,f(x)=﹣x﹣2x﹣1=﹣3x﹣1.

由f(x)<2,得x>﹣1,所以﹣1

綜上可知,M={x|﹣1<x<1}.

(Ⅱ)因為a,b∈M,所以﹣1<a,b<1,即|a|<1,|b|<1

所以|ab|+1﹣(|a|+|b|)=(|a|﹣1)(|b|﹣1)>0

故|ab|+1>|a|+|b|.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是邊長為1的菱形,,,分別為、的中點.

1)證明:直線平面

2)求異面直線所成角的大;

3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,、、均垂直于平面,,,.

1)求與平面所成角的大;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點在x軸上的橢圓C經(jīng)過點,橢圓C的離心率為,是橢圓的左、右焦點,P為橢圓上任意點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點M的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓CA,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點為,過點作與軸垂直的直線交橢圓于,兩點(點在第一象限),過橢圓的左頂點和上頂點的直線與直線交于,且滿足設(shè)為坐標(biāo)原點,,則該橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分?jǐn)?shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[5060),[60,70),[70,80),[80,90),[90,100]

(1)求頻率分布直方圖中a的值;

(2)求這50名問卷評分?jǐn)?shù)據(jù)的中位數(shù);

(3)從評分在[4060)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為常數(shù)).

(1)求的極值;

(2)設(shè),記,已知為函數(shù)是兩個零點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為、為橢圓C上一點,且的中點By軸上,.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)若直線交橢圓于PQ兩點,若PQ的中點為NO為原點,直線ON交直線于點M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列滿足:,

1)求數(shù)列的通項公式;

2)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案