已知,點(diǎn)P滿足,記點(diǎn)P的軌跡為E,
(1)求軌跡E的方程;
(2)如果過點(diǎn)Q(0,m)且方向向量為=(1,1)的直線l與點(diǎn)P的軌跡交于A,B兩點(diǎn),當(dāng)時(shí),求△AOB的面積.
【答案】分析:解:(1)點(diǎn)P滿足,得出點(diǎn)P的軌跡是以(,0),(-,0)為焦點(diǎn)的橢圓從而寫出點(diǎn)P的軌跡方程即可.
(2)依題意直線AB的方程為y=x+m,設(shè)A(x1,y1),B(x2,y2)代入橢圓方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量垂直的條件可求得m值,最后利用弦長公式結(jié)合三角形的面積公式即可解決問題.
解答:解:(1)∵點(diǎn)P滿足,

∴點(diǎn)P的軌跡是以(,0),(-,0)為焦點(diǎn)的橢圓,
a=2,c=,b=1,
∴點(diǎn)P的軌跡方程為
(2)依題意直線AB的方程為y=x+m.
設(shè)A(x1,y1),B(x2,y2
代入橢圓方程,得5x2+8mx+4m2-4=0,(1分)△=64m2-20(4m2-4)>0,∴m2<5,
,,
,
因此=
=,
=
點(diǎn)評:本題考查橢圓的性質(zhì)與其性質(zhì)的應(yīng)用,注意(2)的處理弦長問題的一般方法,將直線的方程代入橢圓方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用弦長公式即可求得m值,從而解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點(diǎn)B(-1,0)、C(1,0),平面上的動點(diǎn)P滿足|
CP
|•|
BC
|=
BP
BC
,記動點(diǎn)P的軌跡為曲線E.過點(diǎn)C作直線交曲線E于兩點(diǎn)M、N,G為線段MN的中點(diǎn),過點(diǎn)G作x軸的平行線與曲線E在點(diǎn)M處的切線交與點(diǎn)A.
(Ⅰ)求曲線E的方程.
(Ⅱ)試問點(diǎn)A是否恒在一條定直線上?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A、B分別在直線y=x和y=-x上運(yùn)動,且|AB|=
4
5
5
,動點(diǎn)P滿足2
OP
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)過曲線C上任意一點(diǎn)作它的切線l,與橢圓
x2
4
+y2=1
交于M、N兩點(diǎn),求證:
OM
ON
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市高三上學(xué)期期末模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

在平面直角坐標(biāo)系中,已知三點(diǎn),,曲線C上任意—點(diǎn)滿足:

(l)求曲線C的方程;

(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;

(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動.若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),取得最小值,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:晉中三模 題型:解答題

已知兩點(diǎn)A、B分別在直線y=x和y=-x上運(yùn)動,且|AB|=
4
5
5
,動點(diǎn)P滿足2
OP
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)過曲線C上任意一點(diǎn)作它的切線l,與橢圓
x2
4
+y2=1
交于M、N兩點(diǎn),求證:
OM
ON
為定值.

查看答案和解析>>

同步練習(xí)冊答案