已知三個(gè)不等式:數(shù)學(xué)公式(其中a,b,c,d均為實(shí)數(shù)),用其中兩個(gè)不等式作為條件,余下的一個(gè)不等式作為結(jié)論組成一個(gè)命題,可組成正確命題的個(gè)數(shù)是________.

3
分析:用三個(gè)不等式中的兩個(gè)作條件,第三個(gè)作結(jié)論,可組成三個(gè)命題,根據(jù)不等式的運(yùn)算性質(zhì)依次對(duì)三個(gè)命題進(jìn)行驗(yàn)證即可得出正確命題的個(gè)數(shù)
解答:若ab>0,bc-ab>0成立,不等式bc-ab>0兩邊同除以ab可得,即ab>0,bc-ab>0?
若若ab>0,成立,不等式兩邊同乘以ab,可得bc-ab>0,即ab>0,?bc-ab>0
,bc-ab>0成立,由于,又bc-ab>0成立,故ab>0,由此知,bc-ab>0?ab>0
綜上知,以三個(gè)中任意兩個(gè)為條件都可推出第三個(gè)成立,故可組成的正確命題有3個(gè).
故答案為3
點(diǎn)評(píng):本題考查不等式與不等式關(guān)系及不等式的運(yùn)算性質(zhì),解題的關(guān)鍵是根據(jù)三個(gè)不等式依據(jù)題設(shè)要求構(gòu)造出三個(gè)命題,熟練掌握不等式的性質(zhì)可輔助準(zhǔn)確判斷
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α
=
1
1
,屬于特征值1的一個(gè)特征向量為
β
=
&-2

(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2
;
(II)求M6
ξ
的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長(zhǎng)方體從一個(gè)頂點(diǎn)出發(fā)的三條棱長(zhǎng)之和等于3,求其對(duì)角線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南京市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案