若焦點在x軸上的橢圓數(shù)學公式的離心率為數(shù)學公式,則m=________.


分析:依題意,2>m>0,由e==即可求得m.
解答:∵焦點在x軸上的橢圓+=1的離心率為
∴2>m>0,e==,
∴m=
故答案為:
點評:本題考查橢圓的簡單性質(zhì),利用離心率得到關于m的關系式是關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若焦點在x軸上的橢圓 
x2
2
+
y2
m
=1
的離心率為
1
2
,則m=( 。
A、
3
2
B、
3
C、
8
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若焦點在x軸上的橢圓
x2
3
+
y2
m
=1的離心率為
1
2
,則m=(  )
A、
3
B、
9
4
C、
8
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若焦點在x軸上的橢圓
x2
k+4
+
y2
9
=1
的離心率為
1
2
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•東城區(qū)一模)若焦點在x軸上的橢圓
x2
2
+
y2
m
=1
的離心率為
1
2
,則m=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若焦點在x軸上的橢圓
x2
45
+
y2
b2
=1
上有一點,使它與兩焦點的連線互相垂直,則正數(shù)b的取值范圍是
(0,
3
10
2
]
(0,
3
10
2
]

查看答案和解析>>

同步練習冊答案