sin119°sin181°-sin91°sin29°等于

[  ]
A.

B.

C.

D.

答案:B
解析:

原式-sin61°sin1°-cos61°cos1°=-cos(61°-1°)=-cos60°=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項(xiàng)式.對(duì)于cos3x,我們有
cos3x=cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx
可見cos3x可以表示為cosx的三次多項(xiàng)式.一般地,存在一個(gè)n次多項(xiàng)式Pn(t),使得cosnx=Pn(cosx),這些多項(xiàng)式Pn(t)稱為切比雪夫多項(xiàng)式.
(I)求證:sin3x=3sinx-4sin3x;
(II)請(qǐng)求出P4(t),即用一個(gè)cosx的四次多項(xiàng)式來表示cos4x;
(III)利用結(jié)論cos3x=4cos3x-3cosx,求出sin18°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin54°sin18°=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin78°cos18°-cos78°sin18°=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:某同學(xué)求解sin18°的值其過程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案