【題目】某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;

(2)設公司獲得的毛利潤(毛利潤=銷售總價成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

【答案】(1);(2)當時,,此時.

【解析】

試題分析:(1)由于為一次函數(shù)所以只需從圖中找兩點坐標代入即可;(2)銷售總價銷售單價銷售量,成本總價成本單價銷售量,得毛利潤為關于的一元二次函數(shù)注意,為二次函數(shù)給定區(qū)間求最值問題.

試題解析:由圖象知,當時,;當時,,

分別代入,解得,

所以 6分

銷售總價銷售單價銷售量,成本總價成本單價銷售量,

代入求毛利潤的公式,得

10分

,

時,,此時 14分

答:當銷售單價為元/件時,可獲得最大毛利潤為元,此時銷售量為件. 16分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點.

(1)求證:C1D⊥D1E;

(2)在棱AA1上是否存在一點M,使得BM∥平面AD1E?若存在,求的值,若不存在,說明理由;

(3)若二面角B1AED1的大小為90°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正項數(shù)列{}滿足:,則稱此數(shù)列為“比差等數(shù)列”.

(1)請寫出一個“比差等數(shù)列”的前3項的值;

(2)設數(shù)列{}是一個“比差等數(shù)列”

(i)求證:;

(ii)記數(shù)列{}的前項和為,求證:對于任意,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點 ,且,記點, .

(Ⅰ)求直線的方程;

(Ⅱ)證明:線段與曲線有且只有一個異于、的公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.

(1)求橢圓C的方程;

(2)當MA,MB與x軸所構成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)求下列函數(shù)的解析式:

(1)已知,求;

(2) 已知函數(shù)是一次函數(shù),且滿足關系式,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;

(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】推行“課堂”教學法,某化學老師分別傳統(tǒng)教學和“課堂”種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,出的莖葉圖如下圖記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;

(2)上統(tǒng)計數(shù)據(jù)填寫下面聯(lián)表,并判斷能否在犯錯誤的概率不超過前提下認為“成績優(yōu)良與教學方式有關”?

總計

成績優(yōu)良

成績不優(yōu)良

總計

獨立性檢驗界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

總計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

總計

20

10

30

附表:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

經(jīng)計算的觀測值為10,則下列選項正確的是(  )

A. 有99.5%的把握認為使用智能手機對學習有影響

B. 有99.5%的把握認為使用智能手機對學習無影響

C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響

D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響

查看答案和解析>>

同步練習冊答案