甲乙兩同學(xué)在高二年級的6次數(shù)學(xué)測驗成績(滿分100分)如圖莖葉圖所示,則下列說法正確的是( 。
A、甲乙同學(xué)的平均成績相同,但是甲同學(xué)的成績比乙穩(wěn)定
B、甲乙同學(xué)的平均成績相同,但是乙同學(xué)的成績比甲穩(wěn)定
C、甲同學(xué)的平均成績比乙同學(xué)好,但是乙同學(xué)的成績比甲穩(wěn)定
D、乙同學(xué)的平均成績比甲同學(xué)好,但是甲同學(xué)的成績比乙穩(wěn)定
考點:莖葉圖
專題:概率與統(tǒng)計
分析:本題考查的是數(shù)據(jù)的穩(wěn)定程度與莖葉圖形狀的關(guān)系,莖葉圖中各組數(shù)據(jù)若大部分集中在某條線上,表示該組數(shù)據(jù)越穩(wěn)定.
解答: 解:由莖葉圖可知:
甲同學(xué)的數(shù)據(jù)葉峰偏下,
甲同學(xué)的得分大部分集中在80~100分之間,而乙同學(xué)的得分相對比較散
故甲同學(xué)的成績發(fā)揮比較穩(wěn)定.
故選:A
點評:本題考查莖葉圖,莖葉圖的優(yōu)點是可以保存數(shù)據(jù)的原始狀態(tài),沒有數(shù)據(jù)損失,從莖葉圖上可以看出兩組數(shù)據(jù)的穩(wěn)定程度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P在圓C1:x2+(y+3)2=1上,點Q在圓C2:(x-4)2+y2=4上,則|PQ|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了了解新的一輪教改模式有效性的“認(rèn)可度”,在全校師生(可認(rèn)為很多人)進(jìn)行了“認(rèn)可度”的問卷調(diào)查,現(xiàn)隨機(jī)抽查50名師生,對他們的“認(rèn)可度”統(tǒng)計分析得如圖
(1)求這50名師生的“認(rèn)可度”的平均值(每一區(qū)間取中點值計算)
(2)設(shè)表中個區(qū)間“認(rèn)可度”分?jǐn)?shù)的中點值構(gòu)成集合A,那么從集合A中任取一值,記下該值后放回,然后再隨機(jī)任選一個又記下該值后又放回,設(shè)第一次的值記為x,第二次的值記為y,求y>x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
log2(1-x)-2a,x≤0
x2-4ax+a,x>0
有三個不同零點,則實數(shù)a的取值范圍是(  )
A、a≤0
B、a>
1
4
C、
1
4
<a≤
1
2
或a<0
D、a>
1
4
或a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-3)2+(y-4)2=4上的點到直線x+y-14=0的最大距離
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3-x.
(1)討論單調(diào)區(qū)間;
(2)m=1時,求曲線f(x)在M(t,f(t))處的切線方程;
(3)m=1時,設(shè)a>0,如果過點(a,b)時做曲線f(x)的三條切線,證明-a<b<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g(x)=|f(x+2m)-x|,f(t)為不超過實數(shù)t的最大整數(shù),若函數(shù)g(x)存在最大值,則正實數(shù)m的最小值為 ( 。
A、
1
16
B、
1
12
C、
1
8
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Γ={(x,y)|x2-y2=1,x>0},點M是坐標(biāo)平面內(nèi)的動點.若對任意的不同兩點P,Q∈Γ,∠PMQ恒為銳角,則點M所在的平面區(qū)域(陰影部分)為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+3-a,當(dāng)x∈{-2,2}時函數(shù)至少有個零點,求a的范圍
 

查看答案和解析>>

同步練習(xí)冊答案