分析 (1)用有向線段表示向量,以及向量加法的幾何意義,即可求出.
(2)當(dāng)$\overrightarrow{a}$與$\overrightarrow{e}$共線且方向相反時(shí),|$\overrightarrow{a}$+$\overrightarrow{e}$|有最大值,問(wèn)題得以解決.
解答 解:(1)如圖,在平面內(nèi)任取一點(diǎn)A,分別作出$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrowztvbrxz$,
∴$\overrightarrow{AD}$即為所作向量,
(2)單位向量的模為1,
∴當(dāng)$\overrightarrow{a}$與$\overrightarrow{e}$共線且方向相反時(shí),|$\overrightarrow{a}$+$\overrightarrow{e}$|有最大值,即為2+1=3,
∴|$\overrightarrow{a}$+$\overrightarrow{e}$|的最大值為3.
點(diǎn)評(píng) 本題考查了查用有向線段表示向量,以及向量加法的幾何意義,以及向量的幾何意義,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{6\sqrt{13}}{13}$ | C. | $\frac{12\sqrt{13}}{13}$ | D. | $\frac{\sqrt{39}}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}-1$ | B. | $2\sqrt{3}+2$ | C. | $\sqrt{3}+1$ | D. | $2\sqrt{3}-2$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com