已知是首項(xiàng)為19,公差為-2的等差數(shù)列,為的前n項(xiàng)和。
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和
(1)a=-2n+21 S=-n+20n(2)b=3-2n+21 T=-n+20n+
【解析】
試題分析:(1)直接代入等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式可求an及Sn
(2))利用等比數(shù)列的通項(xiàng)公式可求bn-an,結(jié)合(1)中的an代入可求bn,,利用分組求和及等比數(shù)列的前n項(xiàng)和公式可求。解:(1)因?yàn)閍n是首項(xiàng)為a1=19,公差d=-2的等差數(shù)列,,所以an=19-2(n-1)=-2n+21,Sn=19n+×(-2)=20n-n2(6分),(2)由題意bn-an=3n-1,所以bn=an+3n-1,,Tn=Sn+(1+3+32+…+3n-1),=-n2+20n+(12分)
考點(diǎn):等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,等比數(shù)列的通項(xiàng)公式,分組求和及等比數(shù)列的求和公式等知識(shí)的簡(jiǎn)單運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省中山市鎮(zhèn)區(qū)五校高二上學(xué)期期中聯(lián)考數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
已知是首項(xiàng)為19,公差為-2的等差數(shù)列,為的前項(xiàng)和.
(1)求通項(xiàng)及;
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省雷州市高三第二次月考數(shù)學(xué)文試卷(解析版) 題型:解答題
(本小題滿分14分)
已知是首項(xiàng)為19,公差為-4的等差數(shù)列,為的前項(xiàng)和.
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省實(shí)驗(yàn)學(xué)校高二下學(xué)期3月月考文科數(shù)學(xué)(解析版) 題型:解答題
已知是首項(xiàng)為19,公差為-2的等差數(shù)列,為的前項(xiàng)和.
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年新疆烏魯木齊市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題
已知是首項(xiàng)為19,公差為-2的等差數(shù)列,為的前項(xiàng)和.
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年新疆農(nóng)七師高級(jí)中學(xué)高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題
已知是首項(xiàng)為19,公差為-4的等差數(shù)列,為的前項(xiàng)和.
(Ⅰ)求通項(xiàng)及;
(Ⅱ)設(shè)是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com