已知函數(shù)f(x)=lnx-a2x2+ax(a∈R).
(Ⅰ)當a=1時,求f(x)的極值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
(I)當a=1時,f(x)=lnx-x2+x,其定義域是(0,+∞),
∴f′(x)=
1
x
-2x+1=-
2x2-x-1
x

令f'(x)=0,即-
2x2-x-1
x
=0,解得x=-
1
2
或x=1.
∵x>0,∴x=-
1
2
舍去.
當0<x<1時,f'(x)>0;當x>1時,f'(x)<0.
∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減
∴當x=1時,函數(shù)f(x)取得極大值,其值為f(1)=ln1-12+1=0;無極小值.
(II)f′(x)=
1
x
-2a2x+a=
-2a2x2+ax+1
x
=
-(2ax+1)(ax-1)
x

若a=0,f′(x)=
1
x
>0,∴函數(shù)的單調(diào)遞增區(qū)間為(0,+∞)
若a≠0,令f′(x)=
-(2ax+1)(ax-1)
x
=0,∴x1=-
1
2a
,x2=
1
a

當a>0時,函數(shù)在區(qū)間(0,
1
a
),f′(x)>0,函數(shù)為增函數(shù);在區(qū)間(
1
a
,+∞),f′(x)<0,函數(shù)為減函數(shù)
∴函數(shù)的單調(diào)遞增區(qū)間為(0,
1
a
),函數(shù)的單調(diào)遞減區(qū)間為(
1
a
,+∞)
當a<0時,函數(shù)在區(qū)間(0,-
1
2a
),f′(x)>0,函數(shù)為增函數(shù);在區(qū)間(-
1
2a
,+∞),f′(x)<0,函數(shù)為減函數(shù)
∴函數(shù)的單調(diào)遞增區(qū)間為(0,-
1
2a
),函數(shù)的單調(diào)遞減區(qū)間為(-
1
2a
,+∞).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案