12.在平面直角坐標系中,已知角α的終邊經過點P(-3,4)
(1)求sinα和cosα的值;
(2)化簡并求值:$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

分析 (1)利用任意角的三角函數(shù)的定義,求得sinα和cosα的值.
(2)由條件利用誘導公式進行化簡所給的式子,可得結果.

解答 解:(1)∵角α的終邊經過點P(-3,4),∴x=-3,y=4,r=5,
∴$sinα=\frac{y}{r}=\frac{4}{5},cosα=\frac{x}{r}=-\frac{3}{5}$.
(2)$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$=$\frac{(-sinα)(-cosα)(-sinα)(-sinα)}{(-cosα)sinαsinαcosα}$=$-tanα=\frac{-sinα}{cosα}=-\frac{4}{3}$.

點評 本題主要考查任意角的三角函數(shù)的定義,利用誘導公式進行化簡求值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.不等式(x2-2x-3)(x-2)<0的解集為(-∞,-1)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow$=(sinα,1,cosα),則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角是( 。
A.90°B.60°C.30°D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=( 。
A.(0,3]B.[-1,3]C.(3,+∞)D.(-1,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是定義在(0,+∞)上的非負可導函數(shù),且滿足xf'(x)+f(x)≤0,對任意的0<a<b,則必有( 。
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=2.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t為參數(shù))與曲線C:y2-x2=1交于A,B兩點.
(1)求|AB|的長;
(2)求AB中點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設p:函數(shù)$f(x)=\frac{1}{3}{x^3}-a{x^2}+2x+1$ 在區(qū)間[1,2]上是單調增函數(shù),設q:方程(2a2-3a-2)x2+y2=1表示雙曲線,“p 且q”為真命題,則實數(shù)a 的取值范圍為$({-\frac{1}{2},\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1,F(xiàn)2,A,B分別是橢圓的左頂點和上頂點,若線段AB上存在點P,使PF1⊥PF2,則橢圓的離心率的取值范圍為$[\frac{\sqrt{5}-1}{2},\frac{\sqrt{2}}{2}]$.

查看答案和解析>>

同步練習冊答案