【題目】已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足 (g是常數(shù),且(q>0,q≠1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)當(dāng) 時(shí),試證明 ;
(Ⅲ)設(shè)函數(shù).f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使 對(duì)n∈N*?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】解:(I )當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1= (an﹣1﹣1),∴ ,又由S1=a1= (a1﹣1)得a1=q,∴數(shù)列an是首項(xiàng)a1=q、公比為q的等比數(shù)列,∴an=qqn﹣1=qn
(II)
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=
∴ ,∴ 即
∵n=1時(shí), ,∴m≤3,∵m是正整數(shù),∴m的值為1,2,3
【解析】(I )由an=Sn﹣Sn﹣1= (an﹣1﹣1)知 ,由S1=a1= (a1﹣1)得a1=q,由此知an=qqn﹣1=qn . (II)由于 ,故可證明 ;(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)= 所以 由此能求出m的值.
【考點(diǎn)精析】利用等比數(shù)列的通項(xiàng)公式(及其變式)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知通項(xiàng)公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )
A. 當(dāng)時(shí),“”是“”的充要條件
B. 當(dāng)時(shí),“”是“”的充分不必要條件
C. 當(dāng)時(shí),“”是“”的必要不充分條件
D. 當(dāng)時(shí),“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C是直線l上的三點(diǎn),向量 , , 滿足: .則函數(shù)y=f(x)的表達(dá)式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的左焦點(diǎn)為,左準(zhǔn)線方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓于, 兩點(diǎn).
①若直線經(jīng)過(guò)橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足, .求證: 為定值;
②若(為原點(diǎn)),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個(gè)命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點(diǎn)坐標(biāo)為;
⑤若,曲線C為雙曲線,且虛半軸長(zhǎng)為.
其中真命題的序號(hào)為____________.(把所有正確命題的序號(hào)都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為選拔選手參加“中國(guó)漢字聽(tīng)寫(xiě)大全”,某中學(xué)舉行了一次“漢字聽(tīng)寫(xiě)大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”,每次抽取1人,求在第1次抽取的成績(jī)低于90分的前提下,第2次抽取的成績(jī)?nèi)缘陀?0分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛賽車(chē)在一個(gè)周長(zhǎng)為的封閉跑道上行駛,跑道由幾段直道和彎道組成,圖反映了賽車(chē)在“計(jì)時(shí)賽”整個(gè)第二圈的行駛速度與行駛路程之間的關(guān)系.
圖1
圖2
根據(jù)圖有以下四個(gè)說(shuō)法:
①在這第二圈的到之間,賽車(chē)速度逐漸增加;
②在整個(gè)跑道中,最長(zhǎng)的直線路程不超過(guò);
③大約在這第二圈的到之間,賽車(chē)開(kāi)始了那段最長(zhǎng)直線路程的行駛;
④在圖的四條曲線(注:為初始記錄數(shù)據(jù)位置)中,曲線最能符合賽車(chē)的運(yùn)動(dòng)軌跡.
其中,所有正確說(shuō)法的序號(hào)是( )
A. ①②③ B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得萬(wàn)元到萬(wàn)元的投資利益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)收益的.
()請(qǐng)分析函數(shù)是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因.
()若該公司采用函數(shù)模型作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的動(dòng)直線與拋物線: 相交于, 兩點(diǎn).當(dāng)直線的斜率是時(shí), .
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com