設(shè)a=
π
0
(sinx+cosx)dx
,則二項(xiàng)式(ax-
1
x
)6
的展開(kāi)式中常數(shù)項(xiàng)是
-160
-160
分析:利用微積分基本定理求得a,再由二項(xiàng)式定理可求得二項(xiàng)式(ax-
1
x
)6
的展開(kāi)式中常數(shù)項(xiàng).
解答:解:∵a=
π
0
(sinx+cosx)dx=(-cosx+sinx)
|
π
0
=2,
∴設(shè)(2x-
1
x
)
6
的展開(kāi)式的通項(xiàng)為T(mén)r+1,則Tr+1=
C
r
6
•2r•(-1)6-r•xr-(6-r),
由6-2r=0得:r=3.
(2x-
1
x
)
6
的展開(kāi)式中的常數(shù)項(xiàng)是T4=
C
3
6
•23•(-1)3=-160.
故答案為:-160.
點(diǎn)評(píng):本題考查微積分基本定理與二項(xiàng)式定理,求得a的值是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(1-cosα,sinα),
b
=(1+cosβ,sinβ),
c
=(1,0),α、β∈(0,π),
a
c
的夾角為θ1,
b
c
的夾角為θ2,且θ12=
π
3

(1)求cos(α+β)的值;(2)設(shè)
OA
=
a
,
OB
=
b
,
OD
=
d
,且
a
+
b
+
d
=3
c
求證:△ABD是正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)ω>0,函數(shù)y=sin(ωx+
π
3
)-1
的圖象向左平移
3
個(gè)單位后與原圖象重合,則ω的最小值是(  )
A、
2
3
B、
4
3
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=logsinθx,θ∈(0,
π
2
)
,設(shè)a=f(
sinθ+cosθ
2
)
b=f(
sinθ•cosθ
)
c=f(
sin2θ
sinθ+cosθ
)
,那么a、b、c的大小關(guān)系是
a≤b≤c
a≤b≤c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
b
的夾角為θ,定義
a
b
的“向量積”:
a
×
b
是一個(gè)向量,它的模為|
a
×
b
|=|
a
|•|
b
|•sinθ
.若
a
=(-1,1)
b
=(0,2)
,則|
a
×
b
|
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)角α的終邊過(guò)點(diǎn)P(5a,12a)(a≠0),則sinα=
±
12
13
±
12
13

查看答案和解析>>

同步練習(xí)冊(cè)答案