【題目】某氣象站觀測點記錄的連續(xù)4天里,AQI指數(shù)M與當天的空氣水平可見度y(單位cm)的情況如下表1:

M

900

700

300

100

y

0.5

3.5

6.5

9.5

哈爾濱市某月AQI指數(shù)頻數(shù)分布如下表2:

M

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

頻數(shù)

3

6

12

6

3


(1)設(shè)x= ,根據(jù)表1的數(shù)據(jù),求出y關(guān)于x的回歸方程; (參考公式: ;其中
(2)小張開了一家洗車店,經(jīng)統(tǒng)計,當M不高于200時,洗車店平均每天虧損約2000元;當M在200至400時,洗車店平均每天收入約4000元;當M大于400時,洗車店平均每天收入約7000元;根據(jù)表2估計小張的洗車店該月份平均每天的收入.

【答案】
(1)解: = (9+7+3+1)=5, = (0.5+3.5+6.5+9.5)=5,

= =﹣1.05,

=5﹣(﹣1.05)×5=10.25,


(2)解:由表2知AQI指數(shù)不高于200的頻率為 =0.1,

AQI指數(shù)在200至400的頻率為 =0.2,

AQI指數(shù)大于400的頻率為0.7.

設(shè)每月的收入為X,則X的分布列為

X

﹣2000

4000

7000

P

0.1

0.2

0.7

則X的數(shù)學期望為E(X)=﹣2000×0.1+4000×0.2+7000×0.7=5500,

即小張的洗車店該月份平均每天的收入為5500


【解析】(1)利用公式計算線性回歸方程系數(shù),即可求得線性回歸方程;(2)確定每月的收入的取值及概率,從而可求分布列及數(shù)學期望.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A. 命題“若,則”的否命題為“若,則”;

B. 命題“”的否定是“”;

C. 命題“若x=y,則”的逆否命題為真命題;

D. ” 是“”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于實數(shù)x的一元二次方程

a是從區(qū)間中任取的一個整數(shù),b是從區(qū)間中任取的一個整數(shù),求上述方程有實根的概率.

a是從區(qū)間任取的一個實數(shù),b是從區(qū)間任取的一個實數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,過點且互相垂直的兩條直線分別與圓交于點AB,與圓交于點C,D.

(1) 若AB,求CD的長;

(2)若直線斜率為2,求的面積;

(3) 若CD的中點為E,求△ABE面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知當x<1時,f(x)=(2﹣a)x+1;當x≥1時,f(x)=ax(a>0且a≠1).若對任意x1≠x2 , 都有 成立,則a的取值范圍是(
A.(1,2)
B.
C.
D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣1:平面幾何 如圖AB是⊙O的直徑,弦BD,CA的延長線相交于點E,EF垂直BA的延長線于點F.
(I)求證:∠DEA=∠DFA;
(II)若∠EBA=30°,EF= ,EA=2AC,求AF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,g(x)=|x﹣2|,則下列結(jié)論正確的是(
A.h(x)=f(x)+g(x)是偶函數(shù)
B.h(x)=f(x)?g(x)是奇函數(shù)
C.h(x)= 是偶函數(shù)
D.h(x)= 是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )

A. 命題“若x2=1,則x=1”的否命題是“若x2=1,則x≠1”

B. 若命題p:x0∈R,,則x∈R,x2-2x-1<0

C. 命題“若x=y(tǒng),則sin x=sin y”的逆否命題為真命題

D. “x=-1”是“x2-5x-6=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(12分)
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

同步練習冊答案