(2013•崇明縣一模)在△ABC中,角A、B、C所對邊的長分別為a、b、c,若a2+b2=2c2,則cosC的最小值等于
1
2
1
2
分析:通過余弦定理求出cosC的表達(dá)式,利用基本不等式求出cosC的最小值.
解答:解:因?yàn)閍2+b2=2c2,
所以由余弦定理可知,c2=2abcosC,
cosC=
c2
2ab
=
1
2
×
a2+b2
2ab
1
2

故答案為:
1
2
點(diǎn)評:本題考查三角形中余弦定理的應(yīng)用,考查基本不等式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣一模)(x2-
1x
)5
展開式中x4的系數(shù)是
10
10
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣一模)已知數(shù)列{an},記A(n)=a1+a2+a3+…+an,B(n)=a2+a3+a4+…+an+1,C(n)=a3+a4+a5+…+an+2,(n=1,2,3,…),并且對于任意n∈N*,恒有an>0成立.
(1)若a1=1,a2=5,且對任意n∈N*,三個數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對任意n∈N*,三個數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣一模)設(shè)復(fù)數(shù)z(2-i)=11+7i(i為虛數(shù)單位),則z=
3+5i
3+5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣一模)若圓錐的側(cè)面展開圖是半徑為1cm、圓心角為180°的半圓,則這個圓錐的軸截面面積等于
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣一模)數(shù)列{an}的通項(xiàng)公式是an=
1
n+1
 (n=1,2)
1
3n
 (n>2)
,前n項(xiàng)和為Sn,則
lim
n→∞
Sn
=
8
9
8
9

查看答案和解析>>

同步練習(xí)冊答案