已知y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域都是[-3,3],且它們?cè)趚∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)<0的解集為______.
由圖象可得在區(qū)間(0,3)上,g(x)<0恒成立
又∵y=g(x)是奇函數(shù),
∴在區(qū)間(-3,0)上,g(x)>0恒成立
又∵在區(qū)間(0,1)上,f(x)<0,在區(qū)間(1,3)上,f(x)>0,
且y=f(x)是偶函數(shù),
∴在區(qū)間(-3,-1)上,f(x)>0,在區(qū)間(-1,0)上,f(x)<0,
故不等式f(x)•g(x)<0的解集為(-1,0)∪(1,3)
故答案為:(-1,0)∪(1,3)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于任意的x∈R,不等式2x2-a
x2+1
+3>0
恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.a<2
2
B.a≤2
2
C.a(chǎn)<3D.a(chǎn)≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-2,g(x)=xlnx,,
(1)若對(duì)一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)試判斷方程ln(1+x2)-
1
2
f(x)-k=0
有幾個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知關(guān)于x的不等式ex|x-a|≥x在x∈R上恒成立,則實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=f(x)是R上的偶函數(shù),且在[0,+∞)上是減函數(shù),若f(log2x)>f(1)則x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2023)等于(  )
A.-4B.4C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最大值為5,那么f(x)在區(qū)間[-7,-3]上是(  )
A.增函數(shù)且最小值為-5B.增函數(shù)且最大值為-5
C.減函數(shù)且最大值是-5D.減函數(shù)且最小值是-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

偶函數(shù)f(x)在(-∞,0)上是增函數(shù),問它在(0,+∞)是增函數(shù)還是減函數(shù)?能否用函數(shù)單調(diào)性的定義證明你的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)是偶函數(shù),且它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案