【題目】已知函數(shù),.
(1)當時,若關于的不等式恒成立,求的取值范圍;
(2)當時,證明: .
【答案】(1).(2)見解析.
【解析】試題分析:(1)由,得恒成立,令.求出的最小值,即可得到的取值范圍;
∵為數(shù)列的前項和,為數(shù)列的前項和.
∴只需證明 即可.
試題解析:
(1)由,得 .
整理,得恒成立,即.
令.則.
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)的最小值為.
∴,即.
∴的取值范圍是.
(2)∵為數(shù)列的前項和,為數(shù)列的前項和.
∴只需證明 即可.
由(1),當時,有,即.
令,即得 .
∴ .
現(xiàn)證明,
即 .
現(xiàn)證明.
構(gòu)造函數(shù) ,
則 .
∴函數(shù)在上是增函數(shù),即.
∴當時,有,即成立.
令,則式成立.
綜上,得 .
對數(shù)列,,分別求前項和,得
.
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,梯形中,,,,為的中點,將沿翻折,構(gòu)成一個四棱錐,如圖2.
(1)求證:異面直線與垂直;
(2)求直線與平面所成角的大小;
(3)若三棱錐的體積為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中記載了這樣的一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還”,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數(shù)為( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓經(jīng)過伸縮變換后得到曲線.以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為.
(1)求曲線的直角坐標方程及直線的直角坐標方程;
(2)設點是上一動點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的直角坐標方程;
(2)設點的坐標為,若點是曲線截直線所得線段的中點,求的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】政府工作報告指出,2018年我國深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進一步提升;2019年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學研一體化創(chuàng)新機制.某企業(yè)為了提升行業(yè)核心競爭力,逐漸加大了科技投入;該企業(yè)連續(xù)6年來的科技投入(百萬元)與收益(百萬元)的數(shù)據(jù)統(tǒng)計如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根據(jù)散點圖的特點,甲認為樣本點分布在指數(shù)曲線的周圍,據(jù)此他對數(shù)據(jù)進行了一些初步處理,如下表:
其中,.
(1)(i)請根據(jù)表中數(shù)據(jù),建立關于的回歸方程(保留一位小數(shù));
(ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年的收益達到2億,則科技投入的費用至少要多少(其中)?
(2)乙認為樣本點分布在二次曲線的周圍,并計算得回歸方程為,以及該回歸模型的相關指數(shù),試比較甲、乙兩位員工所建立的模型,誰的擬合效果更好.
附:對于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,,相關指數(shù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com