設(shè)(1-
2
x
4=a0+a1
1
x
)+a2
1
x
2+a3
1
x
3+a4
1
x
4,則a2+a4的值是
 
考點:二項式系數(shù)的性質(zhì)
專題:計算題,二項式定理
分析:由二項式定理可得其展開式,結(jié)合題意,分析可得a2、a4的值,計算可得答案.
解答: 解:由題意(1-
2
x
4=a0+a1
1
x
)+a2
1
x
2+a3
1
x
3+a4
1
x
4,
可得a2+a4=
C
2
4
(-2)2+
C
4
4
(-2)4=40

故答案為:40.
點評:本題考查二項式定理的運用,注意
2
x
1
x
的關(guān)系,再由二項式定理分析,求出a2、a4的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
3
,tanβ=-
1
7
,且0<α<
π
2
,
π
2
<β<π,則2α-β的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩個實數(shù)間的一種新運算“*”:x*y=lg(10x+10y),x,y∈R 當(dāng)x*x=y時,記x=*
y
對于任意實數(shù)a,b,c,給出如下結(jié)論:
①(a*b)*c=a*(b*c);  
②(a*b)+c=(a+c)*(b+c);
③a*b=b*a;
④*
a*b
a+b
2

其中正確的結(jié)論是
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{cn},如果存在各項均為正整數(shù)的等差數(shù)列{an}和各項均為正整數(shù)的等比數(shù)列{bn},使得cn=an+bn,則稱數(shù)列{cn}為“DQ數(shù)列”.已知數(shù)列{en}是“DQ數(shù)列”,其前5項分別是:3,6,11,20,37,則en=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)在△ABC中,C為鈍角,設(shè)M=sin(A+B),N=sinA+sinB,P=cosA+cosB,則M,N,P的大小關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=1-cosx,x∈(-1,1).滿足f(1-x2)+f(1-x)<0,則實數(shù)x的取值范圍是( 。
A、(0,1)
B、(1,
2
C、(-2,-
2
D、(-
2
,1)∪(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的一條棱長為2
2
,在該幾何體的正視圖中,這條棱的投影是長為
6
的線段,在該幾何體的左(側(cè))視圖與俯視圖中,這條棱的投影分別是長為a和b的線段,則a+b的最大值為( 。
A、2
2
B、2
3
C、4
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,則下列命題正確的是( 。
A、若數(shù)列{an}是等比數(shù)列,則數(shù)列Sn,S2n-Sn,S3n-S2n是等比數(shù)列
B、若數(shù)列{an}是等差數(shù)列,當(dāng)Sn=m,Sm=n時,Sm+n=m+n
C、若1,a,b,c,9成等比數(shù)列,則b=±3
D、若數(shù)列{an}滿足an•an+1=an+an+1,則數(shù)列{an+2-an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足約束條件
2x+y≥4
x-y≥1
x-2y≤2
,目標(biāo)函數(shù)z=tx+y有最小值6,則t的值可以為(  )
A、3B、-3C、1D、-1

查看答案和解析>>

同步練習(xí)冊答案