【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2+n.
(Ⅰ)求{an}的通項(xiàng)公式an
(Ⅱ)若ak+1 , a2k , a2k+3(k∈N*)恰好依次為等比數(shù)列{bn}的第一、第二、第三項(xiàng),求數(shù)列{ }的前n項(xiàng)和Tn

【答案】解:(Ⅰ)當(dāng)n=1時(shí),a1=S1=2.當(dāng)n≥2時(shí),an=Sn﹣Sn1=(n2+n)﹣[(n﹣1)2+(n﹣1)]=2n.
檢驗(yàn)n=1時(shí),上式符合.
∴an=2n..
(Ⅱ)由題知:ak+1 , a2k , a2k+3(k∈N*)恰好依次為等比數(shù)列{bn}的第一、第二、第三項(xiàng),
=ak+1a2k+3(k∈N*),
即(2×2k)2=2(k+1)2(2k+3),解得k=3.
∴b1=a4=8,b2=a6=12,公比q= =
∴bn= ,
=
∴Tn= + +…+
= +…+ ,
= +…+ = × ,
Tn= ×
【解析】(Ⅰ)當(dāng)n=1時(shí),a1=S1=2.當(dāng)n≥2時(shí),an=Sn﹣Sn1 , 即可得出.(Ⅱ)由題知:ak+1 , a2k , a2k+3(k∈N*)恰好依次為等比數(shù)列{bn}的第一、第二、第三項(xiàng),可得 =ak+1a2k+3(k∈N*),解得k=3.可得bn= , = ,再利用“錯(cuò)位相減法”與求和公式即可得出.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年6月19日凌晨某公司公布的年中促銷全天交易數(shù)據(jù)顯示,天貓年中促銷當(dāng)天全天下單金額為1592億元.為了了解網(wǎng)購(gòu)者一次性購(gòu)物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了6月18日100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.

網(wǎng)購(gòu)金額(元)

頻數(shù)

頻率

5

0.05

15

0.15

25

0.25

30

0.3

合計(jì)

100

1

(Ⅰ)先求出的值,再將圖中所示的頻率分布直方圖繪制完整;

(Ⅱ)對(duì)這100名網(wǎng)購(gòu)者進(jìn)一步調(diào)查顯示:購(gòu)物金額在2000元以上的購(gòu)物者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的購(gòu)物者中網(wǎng)齡不足3年的有20人,請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在3年以上有關(guān)?

網(wǎng)齡3年以上

網(wǎng)齡不足3年

總計(jì)

購(gòu)物金額在2000元以上

35

購(gòu)物金額在2000元以下

20

總計(jì)

100

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式:其中.

(Ⅲ)從這100名網(wǎng)購(gòu)者中根據(jù)購(gòu)物金額分層抽出20人給予返券獎(jiǎng)勵(lì),為進(jìn)一步激發(fā)購(gòu)物熱情,在兩組所抽中的8人中再隨機(jī)抽取2人各獎(jiǎng)勵(lì)1000元現(xiàn)金,求組獲得現(xiàn)金獎(jiǎng)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足 ,當(dāng) 時(shí),f(x)=lnx,若在 上,方程f(x)=kx有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(
A.
B.[﹣4ln4,﹣ln4]
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.

(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?

(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下列要求分配6本不同的書,各有多少種不同的分配方式?

(1)分成三份,1份1本,1份2本,1份3本;

(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;

(3)平均分成三份,每份2本;

(4)平均分配給甲、乙、丙三人,每人2本;

(5)分成三份,1份4本,另外兩份每份1本;

(6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本;

(7)甲得1本,乙得1本,丙得4本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β,cos β=-,sin(α+β)=.

(1)tan 2β的值;

(2)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,其他四個(gè)側(cè)面都是等邊三角形,的交點(diǎn)為為側(cè)棱上一點(diǎn).

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)二面角的大小為時(shí),

試判斷點(diǎn)上的位置,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人在路邊設(shè)局,宣傳牌上寫有“擲骰子,贏大獎(jiǎng)”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點(diǎn)中任選一個(gè),并押上賭注元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點(diǎn)數(shù)在3次擲骰子過(guò)程中出現(xiàn)1次,2次,3次,那么原來(lái)的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎(jiǎng)勵(lì).如果3次擲骰子過(guò)程中,你所押的點(diǎn)數(shù)沒(méi)出現(xiàn),那么你的賭注就被莊家沒(méi)收.

(1)求擲3次骰子,至少出現(xiàn)1次為5點(diǎn)的概率;

(2)如果你打算嘗試一次,請(qǐng)計(jì)算一下你獲利的期望值,并給大家一個(gè)正確的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,且 csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2 ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案