如圖,已知直線與軸、軸分別交于,拋物線經(jīng)過點(diǎn),點(diǎn)是拋物線與軸的另一個(gè)交點(diǎn)。
(1)求拋物線的解析式;
(2)若點(diǎn)P在直線BC上,且,求P點(diǎn)坐標(biāo)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年龍巖一中模擬文)(12分)
如圖,已知直線與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0).
(Ⅰ)若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;
(Ⅱ)若過點(diǎn)B的直線(斜率不等于零)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆浙江省嘉興一中高三高考模擬試題文數(shù) 題型:解答題
(本題滿分15分)如圖,已知直線與拋物線和圓都相切,是的焦點(diǎn).
(1)求與的值;(2)設(shè)是上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線交軸于點(diǎn),以為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;
(3)在(2)的條件下,記點(diǎn)所在的定直線為,直線與軸交點(diǎn)為,連接交拋物線于兩點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省高三第三輪適應(yīng)性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知直線與拋物線相切于點(diǎn),且與軸交于點(diǎn),為坐標(biāo)原點(diǎn),定點(diǎn)的坐標(biāo)為.
(1)若動(dòng)點(diǎn)滿足,求點(diǎn)的軌跡;
(2)若過點(diǎn)的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(diǎn)(在之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省四地六校高二第一次聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
如圖,已知直線與拋物線相交于兩點(diǎn),與軸相交于點(diǎn),若.(1)求證:點(diǎn)的坐標(biāo)為(1,0);(2)求△AOB的面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com