如圖所示,是等腰三角形,是底邊延長(zhǎng)線上一點(diǎn),
,則腰長(zhǎng)=        .

試題分析:以為圓心,以為半徑作圓,則圓經(jīng)過(guò)點(diǎn),即,設(shè)與圓交于點(diǎn)且延長(zhǎng)交圓與點(diǎn),由切割線定理知,即,得,所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,EP交圓于E、C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(1)求證:AB為圓的直徑;
(2)若AC=BD,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),且|AB|=
8
6
11

(1)求拋物線的方程;
(2)在x軸上是否存在一點(diǎn)C,使△ABC為正三角形?若存在,求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C1x2+y2=
4
5
,直線l:y=x+m(m>0)與圓C1相切,且交橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1兩點(diǎn),c是橢圓C2的半焦距,c=
3
b

(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若
OA1
OB1
,求橢圓C2的方程;
(3)在(2)的條件下,設(shè)橢圓C2的左、右頂點(diǎn)分別為A,B,動(dòng)點(diǎn)S(x1,y1)∈C2(y1>0)直線AS,BS與直線x=
34
15
分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線Σ1y=
1
4
x2
的焦點(diǎn)F在橢圓Σ2
x2
a2
+
y2
b2
=1
(a>b>0)上,直線l與拋物線Σ1相切于點(diǎn)P(2,1),并經(jīng)過(guò)橢圓Σ2的焦點(diǎn)F2
(1)求橢圓Σ2的方程;
(2)設(shè)橢圓Σ2的另一個(gè)焦點(diǎn)為F1,試判斷直線FF1與l的位置關(guān)系.若相交,求出交點(diǎn)坐標(biāo);若平行,求兩直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,∠ACB=90°,CD⊥AB,垂足為D,下列結(jié)論錯(cuò)誤的是(  )
A.有三個(gè)直角三角形
B.∠2=∠A
C.∠1和∠B都是∠A的余角
D.∠1=∠2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)圓外一點(diǎn)作圓的切線為切點(diǎn)),再作割線分別交圓于、, 若
AC=8,BC=9,則AB=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

Rt△ABC中,∠C=90°,CD⊥AB于D,若BD∶AD=3∶2,則△ACD與△CBD的相似比為(  )
A.2∶3 B.3∶2C.9∶4D.∶3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,D為⊙O上一點(diǎn),AD、BC相交于點(diǎn)E.

(1)若AD=AC,求證:AP∥CD;
(2)若F為CE上一點(diǎn)使得∠EDF=∠P,已知EF=1,EB=2,PB=4,求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案