如圖,網(wǎng)格紙的小正方形的邊長(zhǎng)是1,在其上用粗線畫(huà)出了某多面體的三視圖,則這個(gè)多面體最長(zhǎng)的一條棱的長(zhǎng)為       .

試題分析:由三視圖知,幾何體是一個(gè)四棱錐,四棱錐的底面是一個(gè)正方形,邊長(zhǎng)是2,四棱錐的一條側(cè)棱和底面垂直,且這條側(cè)棱長(zhǎng)是2,這樣在所有的棱中,連接與底面垂直的側(cè)棱的頂點(diǎn)與相對(duì)的底面的頂點(diǎn)的側(cè)棱是最長(zhǎng)的長(zhǎng)度是。
點(diǎn)評(píng):本題考查由三視圖還原幾何體,所給的是一個(gè)典型的四棱錐,注意觀察三視圖,看出四棱錐的一條側(cè)棱與底面垂直.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分) 在長(zhǎng)方體中,分別是的中點(diǎn),
,.
(Ⅰ)求證://平面
(Ⅱ)在線段上是否存在點(diǎn),使直線垂直,
如果存在,求線段的長(zhǎng),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直四棱柱中,底面是直角梯形,,,

(1)求證:是二面角的平面角;
(2)在上是否存一點(diǎn),使得與平面與平面都平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,在三棱錐中,
底面,點(diǎn),
分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.

(1)若AB=AD=,直線PB與CD所成角為,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大。
(2)若E為線段PC上一點(diǎn),試確定E點(diǎn)的位置,使得平面EBD垂直于平面ABCD,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分) 如圖,四邊形中,為正三角形,,交于點(diǎn).將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為,且點(diǎn)在平面內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若三棱錐的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,體積是,則函數(shù)在其定義域上為(   )
A.增函數(shù)且有最大值B.增函數(shù)且沒(méi)有最大值
C.不是增函數(shù)且有最大值D.不是增函數(shù)且沒(méi)有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)相等,體積為,其三視圖中的俯視圖如圖所示,則其側(cè)(左)視圖的面積是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

空間直角坐標(biāo)系中的形狀是(   )
正三角形   等腰三角形   直角三角形   其他類(lèi)型

查看答案和解析>>

同步練習(xí)冊(cè)答案