設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x<0};q:函數(shù)y=lg(ax2-x+a)的定義域為R.若p∨q是真命題,p∧q是假命題,則實數(shù)a的取值范圍是
 
分析:先求得命題p、q為真命題時a的取值范圍,再根據(jù)題意得命題p、q有且僅有一個為真命題,分別討論“p真q假”與“p假q真”即可得出實數(shù)a的取值范圍.
解答:解:當命題p為真命時,由x>0得0<a<1,
當命題q為真命時,由ax2-x+a>0得△=1-4a2<0且a>0,
∴a>
1
2

由命題“p或q”為真,且“p且q”為假,得命題p、q一真一假(10分)
①當p真q假時,則
0<a<1
a≤
1
2
,得0<a
1
2
;(12分)
②當p假q真時,則
a≥1或a≤0
a>
1
2
,得a≥1,(14分)
∴實數(shù)a的取值范圍是(0,
1
2
]∪[1,+∞)
故答案為:(0,
1
2
]∪[1,+∞).
點評:本題考查了命題真假的判斷與應(yīng)用,屬于中檔題,解題時注意分類討論思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)P:關(guān)于x的不等式:|x-4|+|x-3|<a的解集是φ,Q:函數(shù)y=lg(ax2-x+a)的定義域為R. 如果P和Q有且僅有一個正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x<0};q:函數(shù)y=lg(ax2-x+a)的定義域為R,如果“p∨q”為真命題且“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:關(guān)于x的不等式ax>1的解集是{x|x>0},q:方程x2-ax+1=0無實根,如果〝p∧q〞為假,〝p∨q〞為真,求滿足條件的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:關(guān)于x的不等式logax>0的解集是{x|0<x<1},q:關(guān)于x的不等式x2-x+a2≤0的解集是空集,若p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P:關(guān)于x的不等式2|x|<a的解集為∅,Q:函數(shù)y=lg(ax2-x+a)的定義域為R.如果P和Q有且僅有一個正確,求實數(shù)a的范圍.

查看答案和解析>>

同步練習冊答案