【題目】已知拋物線:上一點到其焦點的距離為2.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設拋物線的準線與軸交于點,直線過點且與拋物線交于,兩點(點在點,之間),點滿足,求與的面積之和取得最小值時直線的方程.
【答案】(Ⅰ)(Ⅱ)或.
【解析】
(Ⅰ)由題意知,拋物線的焦點為,把點代入拋物線方程,再結合點到其焦點的距離為2,利用兩點間距離公式得到關于的方程,解方程即可求解;
(Ⅱ)由(Ⅰ)知,點,易知直線的斜率存在,且不為零,設其方程為,
設,,由,利用平面向量的坐標運算可得,,聯立直線方程和拋物線方程得到關于的一元二次方程,利用韋達定理求出的值,利用數形結合可得,,再利用基本不等式求最值即可求解.
(Ⅰ)的焦點為,依題意有,解得,
所以,拋物線的標準方程為.
(Ⅱ)由(Ⅰ)知,拋物線的標準方程為,其準線方程為:,
所以點易知直線的斜率存在,且不為零,其方程為,
設,,因為,即,
∴,聯立方程,消去,得,,
根據題意,作圖如下:
.
當且僅當,即或時,
與的面積之和最小,最小值為.
時,,,直線的方程為;
時,,,直線的方程為,
∴與的面積之和最小值時直線的方程為或.
科目:高中數學 來源: 題型:
【題目】近年來,隨著“一帶一路”倡議的推進,中國與沿線國家旅游合作越來越密切,中國到“一帶一路”沿線國家的游客人也越來越多,如圖是2013-2018年中國到“一帶一路”沿線國家的游客人次情況,則下列說法正確的是( )
①2013-2018年中國到“一帶一路”沿線國家的游客人次逐年增加
②2013-2018年這6年中,2014年中國到“一帶一路”沿線國家的游客人次增幅最小
③2016-2018年這3年中,中國到“一帶一路”沿線國家的游客人次每年的增幅基本持平
A.①②③B.②③C.①②D.③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,為橢圓上任意一點,且已知.
(1)若橢圓的短軸長為,求的最大值;
(2)若直線交橢圓的另一個點為,直線交軸于點,點關于直線對稱點為,且,三點共線,求橢圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間幾何體是由圓柱切割而成的陰影部分構成,其中,為下底面圓直徑的兩個端點,,為上底面圓直徑的兩個端點,且,圓柱底面半徑是1,高是2,則空間幾何體可以無縫的穿過下列哪個圖形( )
A.橢圓B.等腰直角三角形C.正三角形D.正方形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為,直線與拋物線交于兩點.
(1)若過點,且,求的斜率;
(2)若,且的斜率為,當時,求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現抗體.試驗設計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現抗體的概率為,假設每次接種后當天是否出現抗體與上次接種無關.
(1)求一個接種周期內出現抗體次數的分布列;
(2)已知每天接種一次花費100元,現有以下兩種試驗方案:
①若在一個接種周期內連續(xù)2次出現抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設此種試驗方式的花費為元;
②若在一個接種周期內出現2次或3次抗體,該周期結束后終止試驗,已知試驗至多持續(xù)三個接種周期,設此種試驗方式的花費為元.
比較隨機變量和的數學期望的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司以客戶滿意為出發(fā)點,隨機抽選2000名客戶,以調查問卷的形式分析影響客戶滿意度的各項因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標系表示,左邊縱坐標表示頻數,右邊縱坐標表示頻率,分析線表示累計頻率,橫坐標表示影響滿意度的各項因素,按影響程度(即頻數)的大小從左到右排列,以下結論正確的個數是( ).
①35.6%的客戶認為態(tài)度良好影響他們的滿意度;
②156位客戶認為使用禮貌用語影響他們的滿意度;
③最影響客戶滿意度的因素是電話接起快速;
④不超過10%的客戶認為工單派發(fā)準確影響他們的滿意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐中,,,,.有以下結論:①三棱錐的表面積為;②三棱錐的內切球的半徑;③點到平面的距離為;其中正確的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com