精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線上一點到其焦點的距離為2.

(Ⅰ)求拋物線的標準方程;

(Ⅱ)設拋物線的準線與軸交于點,直線過點且與拋物線交于,兩點(點在點,之間),點滿足,求的面積之和取得最小值時直線的方程.

【答案】(Ⅰ)(Ⅱ).

【解析】

(Ⅰ)由題意知,拋物線的焦點,把點代入拋物線方程,再結合點到其焦點的距離為2,利用兩點間距離公式得到關于的方程,解方程即可求解;

(Ⅱ)由(Ⅰ)知,點,易知直線的斜率存在,且不為零,設其方程為,

,,由,利用平面向量的坐標運算可得,,聯立直線方程和拋物線方程得到關于的一元二次方程,利用韋達定理求出的值,利用數形結合可得,,再利用基本不等式求最值即可求解.

(Ⅰ)的焦點為,依題意有,解得,

所以,拋物線的標準方程為.

(Ⅱ)由(Ⅰ)知,拋物線的標準方程為,其準線方程為:,

所以點易知直線的斜率存在,且不為零,其方程為,

,因為,即,

,聯立方程,消去,得,

根據題意,作圖如下:

.

當且僅當,即時,

的面積之和最小,最小值為.

時,,,直線的方程為;

時,,,直線的方程為,

的面積之和最小值時直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】近年來,隨著一帶一路倡議的推進,中國與沿線國家旅游合作越來越密切,中國到一帶一路沿線國家的游客人也越來越多,如圖是20132018年中國到一帶一路沿線國家的游客人次情況,則下列說法正確的是(

20132018年中國到一帶一路沿線國家的游客人次逐年增加

20132018年這6年中,2014年中國到一帶一路沿線國家的游客人次增幅最小

20162018年這3年中,中國到一帶一路沿線國家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓上任意一點,且已知.

1)若橢圓的短軸長為,求的最大值;

2)若直線交橢圓的另一個點為,直線軸于點,點關于直線對稱點為,且,三點共線,求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知空間幾何體是由圓柱切割而成的陰影部分構成,其中為下底面圓直徑的兩個端點,為上底面圓直徑的兩個端點,且,圓柱底面半徑是1,高是2,則空間幾何體可以無縫的穿過下列哪個圖形(

A.橢圓B.等腰直角三角形C.正三角形D.正方形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的焦點為,直線與拋物線交于兩點.

1)若過點,且,求的斜率;

2)若,且的斜率為,當時,求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現抗體.試驗設計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現抗體的概率為,假設每次接種后當天是否出現抗體與上次接種無關.

1)求一個接種周期內出現抗體次數的分布列;

2)已知每天接種一次花費100元,現有以下兩種試驗方案:

①若在一個接種周期內連續(xù)2次出現抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設此種試驗方式的花費為元;

②若在一個接種周期內出現2次或3次抗體,該周期結束后終止試驗,已知試驗至多持續(xù)三個接種周期,設此種試驗方式的花費為元.

比較隨機變量的數學期望的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司以客戶滿意為出發(fā)點,隨機抽選2000名客戶,以調查問卷的形式分析影響客戶滿意度的各項因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標系表示,左邊縱坐標表示頻數,右邊縱坐標表示頻率,分析線表示累計頻率,橫坐標表示影響滿意度的各項因素,按影響程度(即頻數)的大小從左到右排列,以下結論正確的個數是( ).

35.6%的客戶認為態(tài)度良好影響他們的滿意度;

156位客戶認為使用禮貌用語影響他們的滿意度;

③最影響客戶滿意度的因素是電話接起快速;

④不超過10%的客戶認為工單派發(fā)準確影響他們的滿意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐中,,,.有以下結論:①三棱錐的表面積為;②三棱錐的內切球的半徑;③點到平面的距離為;其中正確的是(

A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習冊答案