已知圓P:x2+y2=4y及拋物線S:x2=8y,過圓心P作直線l,此直線與上述兩曲線的四個交點,自左向右順次記為A,B,C,D,如果線段AB,BC,CD的長按此順序構(gòu)成一個等差數(shù)列,則直線l的斜率為(    )
A.B.C.D.
A

試題分析:圓的方程為,則其直徑長
圓心為,設(shè)的方程為,代入拋物線方程得:
設(shè),





∴線段的長按此順序構(gòu)成一個等差數(shù)列,
,即,解得,故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O′過定點A(0,p)(p>0),圓心O′在拋物線C:x2=2py(p>0)上運(yùn)動,MN為圓O′在x軸上所截得的弦.

(1)當(dāng)O′點運(yùn)動時,|MN|是否有變化?并證明你的結(jié)論;
(2)當(dāng)|OA|是|OM|與|ON|的等差中項時,試判斷拋物線C的準(zhǔn)線與圓O′的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知兩條拋物線,過原點的兩條直線,分別交于兩點,分別交于兩點.
(1)證明:
(2)過原點作直線(異于)與分別交于兩點.記的面積分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·江西?糫設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-2,則拋物線的方程是(  )
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•福建)如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(Ⅰ)求實數(shù)b的值;
(Ⅱ)求以點A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是拋物線為上的一點,以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面上給定一曲線y2=2x,
(1)設(shè)點A的坐標(biāo)為,求曲線上距點A最近的點P的坐標(biāo)及相應(yīng)的距離|PA|.
(2)設(shè)點A的坐標(biāo)為(a,0),a∈R,求曲線上的點到點A距離的最小值dmin,并寫出dmin=f(a)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=2x2的準(zhǔn)線方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,設(shè)拋物線的頂點為A,與x 軸正半軸的交點為B,設(shè)拋物線與兩坐標(biāo)軸正半軸圍成的區(qū)域為M,隨機(jī)往M內(nèi)投一點P, 則點P落在AOB內(nèi)的概率是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案