【題目】設數(shù)列的前項和為,已知.

1)令,求數(shù)列的通項公式;

2)若數(shù)列滿足:.

①求數(shù)列的通項公式;

②是否存在正整數(shù),使得成立?若存在,求出所有的值;若不存在,請說明理由.

【答案】1;(2)①;②存在,

【解析】

1)由題,得,即可得到本題答案;

2)①由,得,所以,恒等變形得,,由此即可得到本題答案;

②由錯位相減求和公式,得的前n項和,然后通過求的解,即可得到本題答案.

1)因為,所以,即

又因為,所以,即,

所以數(shù)列是以2為公比和首項的等比數(shù)列,所以;

2)①由(1)知,,當時,

又因為也滿足上式,所以數(shù)列的通項公式為

因為,所以,所以,

因為,所以數(shù)列是以1為首項和公差的等差數(shù)列,所以

;

②設,則,

所以,

兩式相減得

所以,

,∴,

即:,即.

,則,即,

所以,數(shù)列單調遞減,

,因此,存在唯一正整數(shù),使得成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,點 , 分別是線段, 上的動點,觀察直線, .給出下列結論:

①對于任意給定的點,存在點,使得

②對于任意給定的點,存在點,使得;

③對于任意給定的點,存在點,使得

④對于任意給定的點,存在點,使得

其中正確結論的個數(shù)是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋內(nèi)有個不同的紅球,個不同的白球,

(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,上頂點為,的面積為1,且橢圓的離心率為.

1)求橢圓的標準方程;

2)點在橢圓上且位于第二象限,過點作直線,過點作直線,若直線的交點恰好也在橢圓上,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】臨近開學季,某大學城附近的一款網(wǎng)紅書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關系如下表所示:

時間(/天)

1

4

7

11

28

日銷售量(/個)

196

184

172

156

88

未來1個月內(nèi),前15天每天的價格(元/個)與時間(天)的函數(shù)關系式為(且為整數(shù)),后15天每天的價格(元/個)與時間(天)的函數(shù)關系式為(且為整數(shù)).

1)認真分析表格中的數(shù)據(jù),用所學過的一次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(個)與(天)的關系式;

2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?

3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某大學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:

1:男生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

5

25

30

25

15

2:女生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

10

20

40

20

10

1)若該大學共有女生人,試估計其中上網(wǎng)時間不少于分鐘的人數(shù);

2)完成表3列聯(lián)表,并回答能否有的把握認為學生周日上網(wǎng)時間與性別有關

3)從表3的男生中上網(wǎng)時間少于分鐘上網(wǎng)時間不少于分鐘的人數(shù)中用分層抽樣的方法抽取一個容量為的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過分鐘的概率.3

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

女生

合計

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.

求證:(1)直線平面EFG

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;

(2)FBE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若從答對題數(shù)在內(nèi)的學生中隨機抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案