【題目】設數(shù)列的前項和為,已知.
(1)令,求數(shù)列的通項公式;
(2)若數(shù)列滿足:.
①求數(shù)列的通項公式;
②是否存在正整數(shù),使得成立?若存在,求出所有的值;若不存在,請說明理由.
【答案】(1);(2)①;②存在,
【解析】
(1)由題,得,即可得到本題答案;
(2)①由,得,所以,恒等變形得,,由此即可得到本題答案;
②由錯位相減求和公式,得的前n項和,然后通過求的解,即可得到本題答案.
(1)因為,所以,即,
又因為,所以,即,
所以數(shù)列是以2為公比和首項的等比數(shù)列,所以;
(2)①由(1)知,,當時,,
又因為也滿足上式,所以數(shù)列的通項公式為,
因為,所以,所以,
即,
因為,所以數(shù)列是以1為首項和公差的等差數(shù)列,所以,
故;
②設,則,
所以,
兩式相減得,
所以,
∵,∴,
即:,即.
令,則,即,
所以,數(shù)列單調遞減,
,因此,存在唯一正整數(shù),使得成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體,點, , 分別是線段, 和上的動點,觀察直線與, 與.給出下列結論:
①對于任意給定的點,存在點,使得;
②對于任意給定的點,存在點,使得;
③對于任意給定的點,存在點,使得;
④對于任意給定的點,存在點,使得.
其中正確結論的個數(shù)是( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個口袋內(nèi)有個不同的紅球,個不同的白球,
(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,上頂點為,的面積為1,且橢圓的離心率為.
(1)求橢圓的標準方程;
(2)點在橢圓上且位于第二象限,過點作直線,過點作直線,若直線的交點恰好也在橢圓上,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】臨近開學季,某大學城附近的一款“網(wǎng)紅”書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關系如下表所示:
時間(/天) | 1 | 4 | 7 | 11 | 28 | … |
日銷售量(/個) | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內(nèi),前15天每天的價格(元/個)與時間(天)的函數(shù)關系式為(且為整數(shù)),后15天每天的價格(元/個)與時間(天)的函數(shù)關系式為(且為整數(shù)).
(1)認真分析表格中的數(shù)據(jù),用所學過的一次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(個)與(天)的關系式;
(2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查某大學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:
表1:男生上網(wǎng)時間與頻數(shù)分布表:
上網(wǎng)時間(分鐘) | |||||
人數(shù) | 5 | 25 | 30 | 25 | 15 |
表2:女生上網(wǎng)時間與頻數(shù)分布表:
上網(wǎng)時間(分鐘) | |||||
人數(shù) | 10 | 20 | 40 | 20 | 10 |
(1)若該大學共有女生人,試估計其中上網(wǎng)時間不少于分鐘的人數(shù);
(2)完成表3的列聯(lián)表,并回答能否有的把握認為“學生周日上網(wǎng)時間與性別有關”?
(3)從表3的男生中“上網(wǎng)時間少于分鐘”和“上網(wǎng)時間不少于分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過分鐘的概率.表3:
上網(wǎng)時間少于60分鐘 | 上網(wǎng)時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:,其中,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上.若DE∥平面ACF,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在內(nèi)的學生中隨機抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com