【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
設(shè)函數(shù)的最小值為,且關(guān)于的方程恰有兩個不同的根,求實(shí)數(shù)的取值集合.
【答案】(1)見解析(2)
【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)是否變號進(jìn)行分類討論:當(dāng)時,導(dǎo)函數(shù)不變號,定義域上單調(diào)遞增;當(dāng)時,導(dǎo)函數(shù)先負(fù)后正,對應(yīng)單調(diào)性先減后增(2)要有兩個根,則函數(shù)不單調(diào),因此,結(jié)合函數(shù)圖像可知,函數(shù)先從0增加到 ,再從降到負(fù)無窮,因此 ,即得實(shí)數(shù)的取值集合.
試題解析:(1)
當(dāng)時,當(dāng)時,當(dāng)時,,當(dāng)時,
當(dāng)時,在R上遞增;當(dāng)時,在上遞減,在上遞增。
由(1)知,當(dāng)時,在R上遞增,無最小值.
當(dāng)時,在上遞減,在上遞增,所以==
,當(dāng)時,,當(dāng),,
又當(dāng)時,,當(dāng)時,,
當(dāng)即時關(guān)于的方程有兩解
實(shí)數(shù)的取值集合為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠準(zhǔn)備生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3千元,2千元.甲、乙產(chǎn)品都需要在A,B兩種設(shè)備上加工,在每臺A,B上加工一件甲產(chǎn)品所需工時分別為1小時、2小時,加工一件乙產(chǎn)品所需工時分別為2小時、1小時,A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400小時和500小時.如何安排生產(chǎn)可使月收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,點(diǎn)P是平面A1BC1內(nèi)一動點(diǎn),且滿足|PD|+|PB1|=6,則點(diǎn)P的軌跡所形成的圖形的面積是( )
A.2π
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足(其中且).
(1)求函數(shù)的解析式,并判斷其奇偶性和單調(diào)性;
(2)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有兩點(diǎn)A(1,0),B(﹣1,0),點(diǎn)P是圓C上的動點(diǎn),求使|AP|2+|BP|2取得最小值時點(diǎn)P的坐標(biāo);
(2)若Q是x軸上的動點(diǎn),QM,QN分別切圓C于M,N兩點(diǎn),①若 ,求直線QC的方程;②求證:直線MN恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水果樹獲得的利潤為(單位:百元).
(1)求的函數(shù)關(guān)系式;
當(dāng)投入的肥料費(fèi)用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(t,t),點(diǎn)M是圓O1:x2+(y﹣1)2= 上的動點(diǎn),點(diǎn)N是圓O2:(x﹣2)2+y2= 上的動點(diǎn),則|PN|﹣|PM|的最大值是( )
A.1
B. ﹣2
C.2+
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為y=kx+b(其中k的值與b無關(guān)),圓M的方程為x2+y2﹣2x﹣4=0.
(1)如果不論k取何值,直線l與圓M總有兩個不同的交點(diǎn),求b的取值范圍;
(2)b=1,l與圓交于A,B兩點(diǎn),求|AB|的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com