已知數(shù)列滿足奇數(shù)項(xiàng)成等差數(shù)列,而偶數(shù)項(xiàng)成等比數(shù)列,且,成等差數(shù)列,數(shù)列的前項(xiàng)和為.
(1)求通項(xiàng);
(2)求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科二項(xiàng)式定理與性質(zhì)(解析版) 題型:填空題
若=xn+…+ax3+bx2+…+1(n∈N*),且a∶b=3∶1,那么n=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文解一元二次不等式、分式不等式、簡單高次不等式(解析版) 題型:選擇題
不等式的解集是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
如圖,是拋物線為上的一點(diǎn),以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED = 1 : 3,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:填空題
如圖,AB是⊙O的一條切線,切點(diǎn)為B,ADE、CFD都是⊙O的割線,AC=AB.
(1)證明:AC2=AD·AE
(2)證明:FG∥AC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
已知橢圓的左右頂點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
已知函數(shù)f(x)=ex+2x2—3x
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2) 當(dāng)x ≥1時,若關(guān)于x的不等式f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項(xiàng)訓(xùn)練(解析版) 題型:選擇題
若函數(shù)在區(qū)間[0,1]上的最小值等于-3,則實(shí)數(shù)的取值范圍是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
如圖,已知四棱錐P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中點(diǎn)。
(1)求證:AC⊥平面BDE;
(2)若直線PA與平面PBC所成角為30°,求二面角P-AD-C的正切值;
(3)求證:直線PA與平面PBD所成的角φ為定值,并求sinφ值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com