2.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角,求$\frac{1-co{s}^{2}α}{cos(\frac{3π}{2}+α)+cosα}$-$\frac{sin(α-\frac{7π}{2})+sin(2015π-α)}{ta{n}^{2}α-1}$.

分析 有條件利用同角三角函數(shù)的基本關(guān)系求得 sinα+cosα的值,再利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式化簡所給的式子為 sinα+cosα,從而得到結(jié)果.

解答 解:∵sinαcosα=$\frac{1}{8}$,且α是第三象限角,
∴sinα+cosα=-$\sqrt{{(sinα+cosα)}^{2}}$=-$\sqrt{1+2sinαcosα}$=-$\frac{\sqrt{5}}{2}$,
∴$\frac{1-co{s}^{2}α}{cos(\frac{3π}{2}+α)+cosα}$-$\frac{sin(α-\frac{7π}{2})+sin(2015π-α)}{ta{n}^{2}α-1}$=$\frac{{sin}^{2}α}{sinα+cosα}$-$\frac{sin(α+\frac{π}{2})+sinα}{{tan}^{2}α-1}$=$\frac{{sin}^{2}α}{sinα+cosα}$-$\frac{{cos}^{2}α(sinα+cosα)}{{sin}^{2}α{-cos}^{2}α}$,

=$\frac{{sin}^{2}α}{sinα+cosα}$-$\frac{{cos}^{2}α}{sinα-cosα}$=sinα+cosα=-$\frac{\sqrt{5}}{2}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項和為Sn,若a2=3,S5=25,則a6等于( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用反證法證明命題:“若整系數(shù)一元二次方程ax2+bx+c=0有有理根,那么a,b,c中至少有一個是偶數(shù)”時,下列假設(shè)正確的是( 。
A.a,b,c都是奇數(shù)B.a,b,c中至少有兩個是偶數(shù)
C.a,b,c都是偶數(shù)D.a,b,c中至多有一個偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a>0,b>0,且a+b=2.
(1)求$\frac{2}{a}$+$\frac{8}$的最小值及其取得最小值時a,b的值;
(2)求證:a2+b2≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一只昆蟲在邊長分別為6、8、10的三角區(qū)域內(nèi)隨機爬行,則它到三角形的頂點的距離大于2的地方的概率為1-$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD.AB=AA1=$\sqrt{2}$
(1)證明:A1C⊥平面BB1D1D;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.正四面體S-ABC的所有棱長都為2,則它的體積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.現(xiàn)有2名女教師和1名男教師參加說題比賽,共有2道備選題目,若每位選手從中有放回地隨機選出一道題進行說題,其中恰有一男一女抽到同一道題的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.先閱讀下列結(jié)論的證法,再解決后面的問題:已知a1,a2∈R,a1+a2=1,求證a12+a22≥$\frac{1}{2}$.
【證明】構(gòu)造函數(shù)f(x)=(x-a12+(x-a22
則f(x)=2x2-2(a1+a2)x+a12+a22
=
2x2-2x+a12+a22
因為對一切x∈R,恒有f(x)≥0.
所以△=4-8(a12+a22)≤0,從而得a12+a22≥$\frac{1}{2}$,
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述結(jié)論的推廣式;
(2)參考上述解法,對你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊答案