某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書投放市場后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷售量為萬本.
(1)求該出版社一年的利潤(萬元)與每本書的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書的定價(jià)為多少元時(shí),該出版社一年的利潤最大,并求出的最大值
(1);(2)若,則當(dāng)每本書定價(jià)為元時(shí),出版社一年的利潤最大,最大值(萬元);若,則當(dāng)每本書定價(jià)為11元時(shí),出版社一年的利潤最大,最大值(萬元).

試題分析:本題是實(shí)際問題的考查,考查函數(shù)的最值,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性最值.第一問,利用每本書的銷售利潤銷售量列出表示式,在這一問中,要注意注明函數(shù)的定義域;第二問,利用導(dǎo)數(shù)求函數(shù)最值,先求導(dǎo)數(shù),令導(dǎo)數(shù)為0,解出方程的根,由于這是實(shí)際問題,應(yīng)考慮根必須在定義域內(nèi),討論根是否在內(nèi),分2種情況,分別判斷單調(diào)性求出最值,最后綜合上述2種情況得出結(jié)論.
試題解析:(1)該出版社一年的利潤(萬元)與每本書定價(jià)的函數(shù)關(guān)系式為:
.     5分(定義域不寫扣1分)
(2).       6分
或x=20(不合題意,舍去).    7分
, .在兩側(cè)的值由正變負(fù).
①當(dāng)時(shí),
即是增函數(shù),在是減函數(shù).

②當(dāng)時(shí)上是增函數(shù),

所以
答:若,則當(dāng)每本書定價(jià)為元時(shí),出版社一年的利潤最大,最大值(萬元);若,則當(dāng)每本書定價(jià)為11元時(shí),出版社一年的利潤最大,最大值(萬元)          12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),().
(1)設(shè),令,試判斷函數(shù)上的單調(diào)性并證明你的結(jié)論;
(2)若的定義域和值域都是,求的最大值;
(3)若不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試解答下列兩小題.
(i)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;
(ii)若是兩個(gè)不相等的正數(shù),且以,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若,對一切恒成立,求的最大值;
(2)設(shè),且、是曲線上任意兩點(diǎn),若對任意,直線的斜率恒大于常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù);f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π)且x時(shí),f′(x)>0.則函數(shù)yf(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的導(dǎo)函數(shù),則函數(shù)的單調(diào)減區(qū)間是 _     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的函數(shù)滿足:,且對于任意的,都有,則不等式的解集為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的導(dǎo)函數(shù),則的單調(diào)遞減區(qū)間是      .

查看答案和解析>>

同步練習(xí)冊答案