已知O為平面直角坐標(biāo)系的原點(diǎn),過(guò)點(diǎn)M(-2,0)的直線l與圓x2+y2=1交于P,Q兩點(diǎn).
(I)若,求直線l的方程;
(Ⅱ)若△OMP與△OPQ的面積相等,求直線l的斜率.
【答案】分析:(Ⅰ)利用兩個(gè)向量的數(shù)量積的定義求出,∠POQ=120°,得到O到直線l的距離等于,根據(jù)點(diǎn)到直線的距離公式求出
直線l的斜率,從而得到直線l的方程.
(Ⅱ)因?yàn)椤鱋MP與△OPQ的面積相等,可得,再由P,Q兩點(diǎn)在圓上,可解得點(diǎn)P的坐標(biāo),由兩點(diǎn)式求得
直線l的斜率.
解答:解:(Ⅰ)依題意,直線l的斜率存在,因?yàn)橹本l過(guò)點(diǎn)M(-2,0),可設(shè)直線l:y=k(x+2).
因?yàn)镻、Q兩點(diǎn)在圓x2+y2=1上,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124640791314348/SYS201310251246407913143019_DA/3.png">,所以,
所以,∠POQ=120°,所以,O到直線l的距離等于. 所以,,得,
所以直線l的方程為 ,或
(Ⅱ)因?yàn)椤鱋MP與△OPQ的面積相等,所以,,
設(shè)P(x1,y1),Q(x2,y2),所以,,
所以,,即(*);     因?yàn),P,Q兩點(diǎn)在圓上,
所以,把(*)代入,得,所以,
所以,直線l的斜率,即
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的定義,直線和圓相交的性質(zhì),求出點(diǎn)P的坐標(biāo)是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
),若直線l過(guò)點(diǎn)P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過(guò)點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直角坐標(biāo)平面xOy上的一個(gè)動(dòng)點(diǎn),|OP|=
2
(點(diǎn)O為坐標(biāo)原點(diǎn)),點(diǎn)M(-1,0),則cos∠OPM的取值范圍是
[
2
2
,1]
[
2
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知點(diǎn)P是直角坐標(biāo)平面xOy上的一個(gè)動(dòng)點(diǎn),|OP|=
2
(點(diǎn)O為坐標(biāo)原點(diǎn)),點(diǎn)M(-1,0),則cos∠MOP的取值范圍是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓+=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,),若直線l過(guò)點(diǎn)P,且傾斜角為 ,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案