【題目】在△ABC中,設(shè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面積.
【答案】
(1)解:∵ + =(cosA+ ﹣sinA,cosA+sinA),
∴| + |2=(cosA+ ﹣sinA)2+(cosA+sinA)2,
=2+2 (cosA﹣sinA)+(cosA﹣sinA)2+(cosA+sinA)2
=2+2 (cosA﹣sinA)+2
=4﹣4sin(A﹣ ),
∵| + |=2,
∴4sin(A﹣ )=0,
又∵0<A<π,
∴﹣ <A﹣ < ,
∴A﹣ =0,
∴A=
(2)解:∵由余弦定理,a2=b2+c2﹣2bccosA,又b=4 ,c= a,A= ,
得:a2=32+2a2﹣2×4 × a ,
即:a2﹣8 a+32=0,解得a=4 ,
∴c=8,
∴S△ABC= bcsinA= sin =16
【解析】(1)先根據(jù)向量模的運(yùn)算表示出| + |2 , 然后化簡(jiǎn)成y=Asin(wx+ρ)+b的形式,再根據(jù)正弦函數(shù)的性質(zhì)和| + |=2可求出A的值.(2)先根據(jù)余弦定理求出a,c的值,再由三角形面積公式可得到最后答案.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體EF﹣ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,點(diǎn)E在AC上的射影恰好是線段AO的中點(diǎn).
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)若直線AE與平面ABCD所成的角為60°,求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)交管部門(mén)為了對(duì)該地區(qū)駕駛員的某項(xiàng)考試成績(jī)進(jìn)行分析,隨機(jī)抽取了15分到45分之間的1000名學(xué)員的成績(jī),并根據(jù)這1000名駕駛員的成績(jī)畫(huà)出樣本的頻率分布直方圖(如圖),則成績(jī)?cè)赱30,35)內(nèi)的駕駛員人數(shù)共有( )
A.60
B.180
C.300
D.360
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(1)求異面直線AP與BC所成角的余弦值;
(2)求證:PD⊥平面PBC;
(3)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,為正方體,給出以下五個(gè)結(jié)論:
① 平面;
② ⊥平面;
③ 與底面所成角的正切值是;
④ 二面角的正切值是;
⑤ 過(guò)點(diǎn)且與異面直線 和 均成70°角的直線有4條.
其中,所有正確結(jié)論的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明:△ABC是等邊三角形的充要條件是a2+b2+c2=ab+bc+ac(其中a,b,c是△ABC的三條邊).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線: 與拋物線交于, 兩點(diǎn),記拋物線在, 兩點(diǎn)處的切線, 的交點(diǎn)為.
(I)求證: ;
(II)求點(diǎn)的坐標(biāo)(用, 表示);
(Ⅲ)若,求△的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將號(hào)碼分別為1、2、…、9的九個(gè)小球放入一個(gè)袋中,這些小球僅號(hào)碼不同,其余完全相同,甲從袋中摸出一個(gè)球.其號(hào)碼為a,放回后,乙從此袋中再摸出一個(gè)球,其號(hào)碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com