分析 x2+5x+1=0,化為$x+\frac{1}{x}$=-5,兩邊平方可得${x}^{2}+\frac{1}{{x}^{2}}$,再利用立方和公式即可得出.
解答 解:∵x2+5x+1=0,∴$x+\frac{1}{x}$=-5,
∴$(x+\frac{1}{x})^{2}={x}^{2}+\frac{1}{{x}^{2}}$+2=25,
∴${x}^{2}+\frac{1}{{x}^{2}}$=23.
∴x3+$\frac{1}{{x}^{3}}$=$(x+\frac{1}{x})$$({x}^{2}+\frac{1}{{x}^{2}}-1)$=-5(23-1)=-110.
點評 本題考查了公式變形、多項式求值,考查了計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 區(qū)間[-2,0]上是減函數(shù) | B. | 區(qū)間[0,2]上是減函數(shù) | ||
C. | 區(qū)間[-1,0]上是增函數(shù) | D. | 區(qū)間[0,1]上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com