某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售高訂購,決定當(dāng)一次訂量超過100個時,每多訂購一個,訂購的全部零件的出廠單價降低0.02元,但實際出廠單價不能低于51元.
(1)當(dāng)一次訂購量為多少個時,零件的實際出廠單價恰好降為51元?
(2)設(shè)一次訂購量為x個,零件的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式.
(3)當(dāng)銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1 000個,利潤又是多少元(工廠售出一個零件的利潤=實際出廠單價-成本價)?
(1) .
(2)P=f(x)=N,
(3)銷售商一次訂購500個零件時,該廠獲得的利潤是6 000元;如果訂購1 000個,利潤是11 000元
解析試題分析:(1)設(shè)每個零件的實際出廠價恰好降為51元時,一次訂購量為個,
則.
(2)當(dāng)時,P="60."
當(dāng)100<x<550時,P=60-0.02(x.
當(dāng)時,P="51."
P=f(x)=N,
(3)設(shè)銷售商的一次訂購量為x個時,工廠獲得的利潤為L元,則
L="(P-40)x="
當(dāng)x=500時,L="6" 000;
當(dāng)x="1" 000時,L="11" 000.
即銷售商一次訂購500個零件時,該廠獲得的利潤是6 000元;如果訂購1 000個,利潤是11 000元
考點:本題主要考查分段函數(shù)的概念,函數(shù)模型,函數(shù)的最值。
點評:典型題,解答此類問題的基本步驟是:審清題意,設(shè)出變量,布列函數(shù),多法求解。求最值使,可考慮利用導(dǎo)數(shù)、均值定理、二次函數(shù)性質(zhì)等等。
科目:高中數(shù)學(xué) 來源: 題型:解答題
海安縣城有甲,乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動小時的收費為元,在乙家租一張球臺開展活動小時的收費為元.試求和;
(2)問:小張選擇哪家比較合算?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為,建在C處的垃圾處理廠對城A和城B的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在AB的中點時,對A和城B的總影響度為0.065。
(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到城A的距離;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一艘輪船在航行過程中的燃料費與它的速度的立方成正比例關(guān)系,其他與速度無關(guān)的費用每小時96元,已知在速度為每小時10公里時,每小時的燃料費是6元,要使行駛1公里所需的費用總和最小,這艘輪船的速度應(yīng)確定為每小時多少公里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知二次函數(shù)滿足且.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng)時,不等式:恒成立,求實數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)滿足下列條件:
①當(dāng)時, 的最小值為0,且恒成立;
②當(dāng)時,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當(dāng)時,就有成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商家有一種商品,成本費為a 元,如果月初售出可獲利100元,再將本利都存入銀行,已知銀行月息為2.4%,如果月末售出可獲利120元,但要付保管費5元,試就 a的取值說明這種商品是月初售出好,還是月末售出好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某公園計劃建造一個室內(nèi)面積為800m2的矩形花卉溫室.在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道。沿前側(cè)內(nèi)墻保留3m寬的空地,中間矩形內(nèi)種植花卉.當(dāng)矩形溫室的邊長各為多少時,花卉的種植面積最大?最大種植面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com