已知f(x)為定義在(-3,3)上的可導(dǎo)奇函數(shù),且f(x)<f'(x)(其中f'(x)是f(x)的導(dǎo)函數(shù))對(duì)于x∈(-3,3)恒成立,則f(x)>0的解集為


  1. A.
    (1,3)
  2. B.
    (0,3)
  3. C.
    (-3,-1)
  4. D.
    (-3,0)
B
分析:先根據(jù)f(x)為定義在(-3,3)上的可導(dǎo)奇函數(shù)得到f(0)=0,再根據(jù)f(x)<f'(x)對(duì)于x∈(-3,3)恒成立,得到x∈(-3,3),f'(x)>0恒成立,就可判斷函數(shù)f(x)在(-3,3)上的單調(diào)性,再借助函數(shù)的單調(diào)性解不等式f(x)>0即可.
解答:∵f(x)為定義在(-3,3)上的可導(dǎo)奇函數(shù),∴f(0)=0
∵f(x)<f'(x)對(duì)于x∈(-3,3)恒成立,∴當(dāng)x∈(-3,3),f'(x)>0恒成立.
∴函數(shù)f(x)在(-3,3)為增函數(shù),f(x)>0也即f(x)>f(0),
∴0<x<3
故選B
點(diǎn)評(píng):本題主要考查考察了函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,以及借助函數(shù)的單調(diào)性與奇偶性解不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在(-∞,+∞)上的可導(dǎo)函數(shù),且f(x)<f′(x)對(duì)于x∈R恒成立,則( 。
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時(shí),有f(x+2)=-f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(2013)+f(-2014)的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=
2x2x+1

(1)證明函數(shù)f(x)在(0,1)是增函數(shù)
(2)求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
f(x)=
4-x2
+
x2-4
既是奇函數(shù),又是偶函數(shù);
②f(x)=x和f(x)=
x2
x
為同一函數(shù);
③已知f(x)為定義在R上的奇函數(shù),且f(x)在(0,+∞)上單調(diào)遞增,則f(x)在(-∞,+∞)上為增函數(shù);
④函數(shù)y=
x
2x2+1
的值域?yàn)?span id="tzh7v7z" class="MathJye">[-
2
4
,
2
4
].
其中正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(1+x),則當(dāng)x<0時(shí),有(  )
A、f(x)=-x(1+x)B、f(x)=-x(1-x)C、f(x)=x(1-x)D、f(x)=x(x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案